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Tag der mündlichen Prüfungen: ......................................

Tag der Promotion: ......................................





Institut für theoretische Physik

Inaugural-Dissertation

Real-Time Techniques for the
Yang-Mills Plasma

zur Erlangung des

Doktorgrades der Naturwissenschaften
im Fachbereich Physik der

Mathematisch-Naturwissenschaftlichen Fakultät der
Westfälischen Wilhelms-Universität Münster
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1 Introduction

The last thing one discovers in composing a work is what
to put first.

Blaise Pascal

Little is known about time-dependent thermal processes and non-equilibrium phenomena in strongly
interacting quantum systems. The problem is of particular significance in the light of recent experi-
mental efforts to probe the quark-gluon plasma, i.e. the conjectured plasma phase of nuclear matter,
in heavy-ion collisions. A thermodynamic analysis of quantum chromodynamics, the fundamental
theory of the strong interactions, reveals the existence of a transition temperature separating two
phases of nuclear matter. In the ordinary state of matter below this temperature quarks are confined
into color neutral hadrons by the flux-tubes formed by a cloud of self-interacting gluons and resist
direct observation. Beyond the transition temperature the existence of a plasma of free quarks and
gluons is expected. This is where the state of confinement is breached and the fundamental nuclear
constituents become accessible to direct observation. By probing the properties of nuclear matter
in a plasma phase, additional insight can be gained into the nature of fundamental particles and
interactions which shape physical reality. This research is of particular relevance to cosmology, due
to the possible existence of a phase transition from a nuclear plasma to ordinary hadronic matter,
including the neutrons and protons forming the basic building blocks of the elements, during the
cooling of the universe after the Big Bang.
The notion that a dense, strongly interacting plasma is created in heavy ion collisions is supported
by a number of model-independent observations, referred to as hard probes, which include jet
quenching and J/ψ suppression as discussed below. Experiments have most notably been carried
out at the Relativistic Heavy Ion Collider (RHIC) of Brookhavens National Laboratory and new
experiments scheduled at the Large Hadron Collider (LHC) in Geneva as well as the planned Facil-
ity for Antiprotons and Ions Research (FAIR) in Darmstadt are set to shed additional light on this
previously inaccessible state of matter. Existing theoretical tools for the description of strongly
interacting many particle systems are continuously refined in the quest to reconcile fundamental
theory and experimental evidence, laying the ground for progress in a wide range of areas from
cosmology to the practical concerns of solid matter physics. The modern understanding of numer-
ous distinct disciplines, ranging from nuclear physics to classical plasma dynamics, needs to be
integrated into a comprehensive model of heavy ion collisions to facilitate a comparison between
theoretical predictions and experimental observations. These efforts are significantly complicated
by the fact that these collisions are a dynamic process consisting of many physically distinct stages
which leave their imprint on experimental data. It is therefore a necessity to develop a solid under-
standing of dynamical processes in strongly interacting quantum systems if any contact between
theory and experiment is to be established. As a first step towards this comprehensive understand-
ing pure Yang-Mills theory is investigated employing perturbative as well as numerical techniques
in the course of the research presented here. Significant progress in the quest to gain deeper insight
into the real-time behavior of strongly interacting quantum systems has also been made in the
context of AdS/CFT techniques which rely on a conjectured duality between super gravity on an
AdS5 × S5 manifold and N = 4 Super Yang-Mills theory defined on the asymptotic boundaries of
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the anti de Sitter space. Since the applicability of this technique is limited to a specific supersym-
metric Yang-Mills theory at infinite ’t Hooft coupling and the relation to observables in ordinary
Yang-Mills remains unclear a detailed discussion of these techniques is omitted.
A direct relation to recent experimental observations is established in various chapters of this thesis.
The suppression of J/ψ resonances has long been speculated to be a signature of plasma formation.
It remains debated whether the suppression of this charmonium state, which has already been ob-
served at CERN’s SPS facility at surprisingly low collision energies, can indeed be fully attributed
to the formation of a strongly interacting deconfined state of matter or is caused partially by un-
related nuclear matter effects. Due to the prospect of using quarkonium resonances as a direct
probe of interactions in the deconfined phase the in-medium modification of these resonances is
repeatedly discussed throughout this thesis. It is shown in chapter 4 that the in-vacuo description
of quarkonium by a Schrödinger equation can be extended to a thermal setting. This equation is
subsequently used to define a thermal potential which can be directly related to the quarkonium
spectral function and parametrizes both the energy and decay width of the ground state resonance.
By taking the limit of infinite time and quark mass the real time static potential is defined as an
analogue to the QCD static potential for a generic thermal medium.
The real-time static potential has by now been investigated in numerous other studies and pre-
dictions have been obtained for the initial phase of heavy ion collisions where an anisotropic dis-
tribution of gluon momenta is expected. These results are revisited in chapter 5. It is shown
that changes to the real-time static potential, induced by varying the anisotropy of the momentum
distribution of plasma constituents, are insignificant if the density of the medium is kept constant.
To underline these findings the limit of asymptotically strong anisotropy is investigated where the
quarkonium spectral function is found to remain in qualitative agreement with its counterpart in
an isotropic medium. The perturbative analysis of quarkonium potentials in chapters 4 and 5 is
supplemented by a lattice measurement of the free energy of a static qq̄-pair in chapter 6. Some
additional intuition is gained by a measurement of Polyakov loop correlators in the Green-Karsch
effective theory as a naive strong coupling model for lattice Yang-Mills theory on coarse lattices.
As a first step towards a non-perturbative analysis of plasma dynamics the classical limit of statis-
tical Yang-Mills theory is considered in chapter 7. It is shown that that the classical limit provides
an excellent approximation for the dynamics of strongly occupied modes in any thermal quantum
field theory with a clean separation between soft and hard energy scales. The problems resulting
from the interdependence of hard and soft scales in Yang-Mills theory are highlighted. Large parts
of this chapter are devoted to the numerical implementation of classical Yang-Mills theory on a
Hamiltonian lattice. Analogous lattice techniques have been successfully applied in the context
of baryogenesis and suffer from excessive thermalization times due to the necessity of generating
a thermal ensemble of initial field configurations for the classical time evolution. The duality of
the classical partition function to a Yang-Mills theory coupled to an adjoint Higgs field is used to
employ standard Monte-Carlo techniques for the generation of the ensemble. A significant perfor-
mance gain is achieved in comparison with conventional thermalization techniques and spurious
thermalization times are eliminated.
One of the most important indications of the formation of a quark-gluon plasma is a significant
reduction of the energy of jets at high momenta, referred to as jet quenching. The phenomenon
is attributed to an energy loss of partons in a dense strongly interacting medium. It remains puz-
zling from a perturbative point of view that jets associated with heavy and light quarks or gluons
experience a similar quenching. The phenomenon is studied in chapter 8, in the framework of the
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classical lattice model developed in the previous chapter, by measuring non-perturbative correc-
tions to the momentum diffusion of heavy quarks. The break down of the classical lattice model in
the strong coupling regime is analyzed in detail. Further use is made of this model by measuring
non-perturbative corrections to the imaginary part of the real-time static potential which is asso-
ciated with Landau damping and thus sensitive to soft field dynamics.
From hydrodynamic simulations a multitude of additional properties of the plasma has been de-
duced. One of the best known results of hydrodynamic models is a low plasma viscosity, deduced
from the elliptic flow of the expanding medium, making the quark-gluon plasma the most perfect
liquid ever observed. To establish contact between the effective description of heavy ion collisions
by relativistic hydrodynamics and perturbative QCD the semi-classical framework of kinetic theory
is considered in chapter 9. Techniques developed in the context of the purely classical lattice model
are extended to take into account the effects induced by hard, i.e. sparsely occupied modes, in the
plasma. A generic framework is developed to simulate a plasma in the presence of an arbitrary
hard mode background.
A prerequisite for the successful modeling of experimental data by hydrodynamic simulation is the
assumption that a hydrodynamic description of the expanding plasma is viable already in early
collision phases. From a theoretical point of view it is highly surprising that a local thermal equi-
librium is established so rapidly. Recently Weibel-type instabilities, which have long been known to
drive the rapid formation of a QED-plasma in the presence of an anisotropic background current,
have been put forward as an explanation of this phenomenon. A numerical simulation of these
instabilities is presented in chapter 10.
The presentation of the mentioned subjects is embedded in the attempt to give a rigid and com-
prehensive discussion of present analytical and numerical techniques to compute time dependent
correlation functions in a Yang-Mills plasma in thermal equilibrium and beyond.





2 Yang-Mills Theory

God used beautiful mathematics in creating the world.

Paul Dirac

In this chapter a brief introduction to the theory underlying our present understanding of the
fundamental forces encountered in high energy physics is given.

2.1 Introduction to Yang-Mills Theory

Since its formulation in 1954 Yang-Mills theory [1] has become one of the cornerstones of our
modern understanding of the strong and electroweak forces. The theory is formulated on the
manifold Rd,1 of a flat Minkowskian space-time with d spatial dimensions and characterized by an
invariance under local SU(N) transformations. Before proceeding to the Yang-Mills Lagrangian, it
is necessary to introduce some mathematical notation. Let M be a manifold on which the symmetry
group acts in some fixed representation. The covariant derivative, acting on a field ψ ∈ Rd,1 ×M ,
is then defined as

Dµψ(x) = (∂µ − igAµ(x))ψ(x), (2.1)

where x ∈ Rd,1 denotes the position in space-time. The constant g is called the gauge coupling. The
Lie algebra element Aµ(x) ∈ su(N) is referred to as gauge field. Employing the usual Minkowski
space notation covariant or contravariant space-time indices are written in greek letters while spatial
indices will be indicated by latin letters. The repeated appearance of an index in a product implies
a summation over the index unless explicitly stated otherwise. The curvature of the gauge field A
defines the field-strength tensor

Fµν =
i
g

[Dµ,Dν ] = ∂µAν − ∂νAµ − ig[Aµ, Aν ] (2.2)

with [Aµ, Aν ] being the commutator of the fields. The Yang-Mills Lagrangian can now be introduced
as a quadratic invariant of the field curvature,

LYM = −1
4

TrFµνFµν . (2.3)

Quantum chromodynamics (QCD), the standard theory for strong interactions [2, 3, 4], is obtained
by supplementing the Yang-Mills Lagrangian with the Dirac Lagrangian of a fermion doublet in
the fundamental representation,

LD = iψγµDµψ −mψψ, (2.4)

for each quark species of respective mass m. The fermion fields ψ ∈ Rd,1 × GN (C) are defined
as complex N-dimensional Grassmann variables, transforming in the fundamental representation
at each point in space-time. Many physical questions can be answered within pure Yang-Mills
theory itself which is referred to as quenched approximation. The question of whether or not to
include fermion contributions is often a question of precision versus conceptual clarity and it is
an effective approach to investigate physical problems in a pure Yang-Mills framework first and to
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obtain a more precise answer later in full QCD. Following this spirit the work presented here will
be concerned with pure Yang-Mills theory. Modifications, introduced by an inclusion of fermions,
are discussed where appropriate. To proceed with the discussion it is important to highlight the
gauge invariance of Yang-Mills theory under a local gauge transformation S(x) ∈ SU(N) in more
detail. The transformation acts on a field ψ defined on Rd,1 ×M via

ψ(x) = S(x)ψ′(x). (2.5)

By demanding the covariant derivative of ψ to transform in the same fashion as the field itself it is
straightforward to derive the transformation behavior of the gauge field and field tensor

Aµ = SA′µS
−1 +

i
g
S∂µS

−1 ⇒ Fµν = SF ′µνS
−1. (2.6)

The gauge invariance of the Yang-Mills Lagrangian follows from the cyclicity of the trace. For
quantities to be meaningful in Yang-Mills theory, it is natural to demand them to remain invariant
under a local gauge transformation as well. To relate two fields ψ, φ ∈ R3,1×M at different points
x, y ∈ R3,1 in a gauge invariant fashion the parallel transport WC(x, y) along a space-time curve C
from x to y is introduced. Let c(t) : R → Rd,1 be a parametrization of the curve C with |∂tc| = 1.
The parallel transport along this curve is then defined by the differential equation

∂tWC(x, c(t)) = −ig
∂cµ

∂t
Aµ with WC(x, c(0)) = 1, (2.7)

which is solved by an expression [5] commonly referred to as a Wilson line [P denotes a path
ordering along the curve C]:

WC(x, y) = P exp
{
−ig

∫

C
dxµAµ(x)

}
. (2.8)

The Wilson line transforms as S−1(y)WC(x, y)S(x) and thus renders the correlator of the fields
ψ(x), φ+(y) connected by a Wilson line invariant under arbitrary gauge transformations.
To conclude this section it remains to be pointed out that gauge field configurations can be separated
into equivalence classes of configurations mutually related by continuous and differentiable gauge
transformations. For many applications it is useful or even necessary to pick a subset of field
configurations containing a single element for each equivalence class which is called gauge fixing.
This is often done by specifying a certain gauge fixing condition. In Coulomb gauge, for instance,
the spatial gradient of the gauge field vanishes: ∂iAi = 0. A more sophisticated method consists
in supplementing the Yang-Mills Lagrangian with an explicit symmetry breaking term of the form

δL = −(∂µAµ)2

2λ
. (2.9)

These so called covariant gauges include the Landau (λ → 0) and Feynman (λ = 1) gauges and
will be used in their general form throughout this thesis. Some problems will necessitate the use of
a temporal gauge A0 = 0. It is important to point out that it is difficult to properly fix a gauge in
Yang-Mills theory and that all commonly used gauges are plagued by a residual gauge invariance
due to the existence of multiple intersections of gauge orbits with the hyper plane, proscribed by
the gauge fixing, which are referred to as Gribov copies [6]. For a review of Yang-Mills theory see
[7].
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2.2 Euler-Lagrange Equations

Before proceeding to a quantization of Yang-Mills theory it is necessary to introduce the classical
Euler-Lagrange equations obtained from the variation δSYM = 0 of the Yang-Mills action,

SYM =
∫

d4x {LYM(x) + gTrjµ(x)Aµ(x)} , (2.10)

with respect to the gauge fields. External fields or charges coupled to the Yang-Mills field are
represented by the color current jν ∈ Rd,1×su(N). The process of quantizing the theory will consist
in moving from the space of classical solutions to the complex Hilbert space of quantum states. As
discussed in later chapters in more detail the classical theory itself is a useful approximation for
quantum Yang-Mills theory at high temperatures and will serve as an indispensible tool for gaining
an understanding of the dynamics of the Yang-Mills plasma. The Euler-Lagrange equations of
Yang-Mills theory are referred to as the Yang-Mills equations and take the following simple form,
with the covariant derivative acting on the adjoint components of the field curvature:

DµF
µν = jν . (2.11)

The analogy to the Maxwell equations of relativistic electrodynamics can be worked out in more
detail by formulating the Yang-Mills equations in terms of electric and magnetic fields Ei, Bi ∈
Rd,1× su(N) defined by the following relations:

Ei = F0i and Bi = −1
2
εijkFjk. (2.12)

Choosing a temporal gauge the Yang-Mills equations can be written in the following form reminis-
cent of the familiar Maxwell equations for d = 3:

∂tB = −D×E (Faraday’s law of induction) (2.13)
∂tE = D×B− j (Ampere’s circuital law) (2.14)

D ·E = −j0 (Gauss’s law) (2.15)

The mapping between the gauge fields appearing in the covariant derivative and the electromagnetic
fields is provided by the relation A(t) = A(t0)+

∫ t
t0

dtE(t). Upon decomposing the gauge fields into
the adjoint components of the Lie algebra a set of Maxwell equations for N2 − 1 electromagnetic
fields coupled by a nonlinear memory term is obtained. An evaluation of this set of equations and in
particular the numerical analysis of the classical statistics of the Yang-Mills field is a challenging task
which will be discussed in detail in the chapters 7 and 8. It is shown that the classical theory provides
a viable approximation to the physics of soft fields, i.e modes with high occupation numbers, in the
full quantum theory at sufficiently high temperature. The application of a classical approximation
to Yang-Mills theory is complicated by an interdependence of soft and hard momentum scales
where quantum effects can not be neglected. The inclusion of these quantum effects is discussed in
chapter 9 and illustrated in chapter 10 by an analysis of non-abelian plasma instabilities.
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2.3 The Problem of Quantization and the Existence of a Mass Gap

Since Yang-Mills theory is expected to describe the force field of the strong interactions the question
needs to be raised why wave solutions of the Yang-Mills equations are not observed on everyday
length and energy scales while we are constantly surrounded by solutions of the Maxwell equations
in the familiar form of light and the many electromagnetic phenomena encountered in our daily
lives. This is a common way of stating the famous mass gap problem since it is assumed that
quantum Yang-Mills theory is fundamentally different from its abelian counterpart and has no
valid classical approximation at low energies due to the existence of a mass gap separating the
lowest energy state from the vacuum. To understand how the nonlinear nature of the Yang-Mills
field leads to fundamental differences to the electromagnetic interactions in a quantized theory it is
instructive to consider the quantization of electromagnetism first. Let W be the space of solutions
to the Maxwell equations modulo gauge transformations. W is an infinite dimensional linear space
whose elements are represented by the classical plane wave solutions in a given gauge. The classical
Hamiltonian is a positive quadratic function on W and thus provides a metric for the space of
classical solutions. The theory is quantized in a rigid fashion by demanding that the Hamiltonian
H must be represented by a bounded hermitian operator acting on the Hilbert space H of the
quantized theory. The Hilbert space of energy eigenstates is then uniquely defined,

H = ⊕∞n=0SymnW, (2.16)

where SymnW is the subspace of classical solutions with an n-fold U(1)-symmetry (i.e. with n
charges present). In the non-abelian theory the situation is more complicated since the space of
classical solutions is neither linear nor is the Hamiltonian H quadratic. Thus a quantization along
the previously sketched lines is only possible by expanding around the minimum of the energy
where H is quadratic. The systematic expansion in the coupling constant of the quantized theory
is referred to as perturbation theory (see chapter 3 for details). Energy eigenstates of nonlinear
theories are bound states characterized by complex exchanges of the linear modes of the non-
interacting theory. A perturbative treatment of Yang-Mills theory breaks down at low energies
however due to a divergence of the running coupling while at asymptotically high energies the
theory becomes non-interacting. This property is known as asymptotic freedom [8, 9]. It still
remains an open question how to quantize nonlinear theories in a non-perturbatively valid way and
to rigidly prove the existence of a mass gap in quantum Yang-Mills theory. For a more in depth
discussion of these subjects the interested reader is referred to [10].
In practice the most viable method of quantizing Yang-Mills theory is by using path integral
quantization. This amounts to stating that the expectation value of some function f(A) is given
by a path integral over all possible field configurations weighed by their classical action S,

〈f〉 =
1
Z

∫
[DA] f(A)eiS with Z =

∫
[DA] eiS . (2.17)

Z is the partition function of the theory. By performing the Wick rotation t→ iτ and discretizing
the path integral on a lattice (see chapter 5) the system becomes amenable to a numerical treatment.
The spectrum of energy eigenstates in Yang-Mills theory, referred to as glueballs, obtained in
numerical simulation confirms the existence of a mass gap with the lowest excited energy eigenstate
0++ having the mass m0++ ' 1.7 GeV.
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2.4 External Charges and Confinement

In this section the concept of a static charge and the binding energy between charge multiplets
is defined. Let ψ ∈ M × Rd,1 be a fermion field with the symmetry group acting on M in some
representation r. From (2.4) the adjoint components of the associated color current are

jaµ = ψγµT
a
r ψ, (2.18)

with T ar denoting the generator a of SU(N) in the representation r. The color current is invariant
under a local symmetry transformation S ∈ r × Rd,1 while gauge field configurations fulfilling the
Yang-Mills equations (2.11) transform according to

SAµS−1 = jµ. (2.19)

To state the presence of a static color charge j0 = qδ(x) in the representation r at some position
x ∈ Rd,1 thus means to demand that the gauge field component A0 transforms in the representation
r under a local SU(N) transformation at x. To remove field configurations not fulfilling the trans-
formation property (2.19) in the path integral formalism a projection function is introduced. Let C
be the world line of a localized color charge g in the representation r parametrized by the function
c(t) : R→ Rd,1, |c(t)| = 1. The projection function W r

C must equal the product of group characters
of the gauge field in the representation r along C to ensures that unphysical configurations vanish
upon integration over the gauge fields along the world line. It is straightforward to verify that the
quantity satisfying this property is just the Wilson line (2.8) along C in the representation r. The
simplest gauge invariant projector for a charge multiplet is given by a closed Wilson line, called
Wilson loop, of the form

L[(x, y), (0, t)] =
1
N

Tr =
1
N

Tr {Wx,0→tWx→y,tWy,t→0Wy→x,0} (2.20)

which corresponds to a static qq-pair connected by a parallel transport along a straight spatial line
between the constituent positions x, y ∈ Rd. The pair exists in the time interval [0, t]. The ground
state binding energy of any static charge multiplet is the lowest energy eigenstate in the presence
of the charges. Let Q(0, t) be a projection function for the charge multiplet suitably chosen to
include field configurations with constant overlap to the ground state. The ground state energy V
can then be determined by Wick rotation from the relation:

V = − lim
τ→∞

∂

∂τ
ln〈Q(0,−iτ)〉 (2.21)

For a static qq-pair the potential, as determined from lattice simulations, depends on the spatial
separation x of the charges with a linear part due to the formation of a flux tube with string tension
σ and a Coulomb part with effective coupling αs [CF = 2N/(N2 − 1) is the fundamental Casimir]:

V qq(x) = −CF
αs
x

+ σx. (2.22)

It is obvious that it is impossible to separate both charges since the potential becomes infinite in
the limit x→∞. Since it is also clear from (2.21) that the binding energy is ill defined for any non
gauge-invariant quantity, where 〈Q〉 = 0, charge multiplets must form color neutral bound states
of limited size. This phenomenon is referred to as confinement.
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2.5 Yang-Mills Theory at Finite Temperature

To introduce the concept of a medium in a statistical sense it is again useful to choose a temporal
gauge where the familiar framework of statistical mechanics can be applied in a straightforward
fashion. Let σ̂ be a Hermitian operator acting on the Hilbert space H of eigenstates to the set of
gauge field operators {Ai(t, x)}, x ∈ Rd at a time t = t0. The statistical expectation value of an
arbitrary operator f̂ in a medium, defined by the statistical operator σ̂, is

〈f̂〉 =
1
Z

Tr {σ̂f̂} with Z = Tr σ̂, (2.23)

where the trace runs over all states of the Hilbert space H and Z is called partition function. σ̂
is also called density matrix. The density matrix for a relativistic system in thermal equilibrium
was conjectured to be identical to the familiar non-relativistic Boltzmann factor by Jüttner in 1911
[11] while investigating a dilute relativistic gas. When referring to thermal equilibrium it is thus
expressed that the distribution of states in a statistical system is described by the density matrix

σ̂eq = e−βĤ−µiQ̂i (2.24)

where Ĥ is the Hamilton operator and β = 1/T is the inverse temperature. The system of natural,
where ~ = c = kB = 1, is used throughout this thesis unless stated otherwise. The operator µiQ̂i
represents the set of classically conserved charges {Qi} and their associated chemical potentials.
A rigid proof of Jüttners conjecture on a classical level is outstanding to the present day due to
difficulties in formulating Hamiltonian mechanics for a relativistic system of interacting particles.
Upon supplementing the Hilbert space H with a canonical commutation relation

[Âai (x), Êbj (y)] = iδijδabδ(x− y) (2.25)

between the adjoint components of the field operator and their conjugate momenta given by the
electric fields Êai a path integral representation of the partition function is obtained as discussed
in the next chapter. In the special case of thermal equilibrium and vanishing chemical potentials
observables can be calculated by formulating the theory on the manifold M of a flat Euclidean
space-time Rd+1 with a compactified temporal dimension of extent β. The expectation value of an
observable f̂ is then given by the expression [12]

〈f〉 =
1
Z

∫
[DA] f(A)e−SE with Z =

∫
[DA] e−SE . (2.26)

with x ∈ M and SE denoting the Yang-Mills action (2.10) with a Euclidean metric. Time depen-
dent observables are obtained by Wick rotation and analytical continuation of the corresponding
euclidean quantities. In Euclidean Yang-Mills theory with a finite temporal extent β the relations
(2.21,2.22) which led to the postulate of confinement are no longer valid. The fact that it is no
longer possible to define the binding energy of a charge pair by taking the infinite Euclidean time
limit is revisited in later chapters. By assuming the usual thermodynamic relations to hold it is
however possible to define the free energy F of a charge multiplet represented by the projector Q:

F = −β ln〈Q〉 (2.27)
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Figure 2.1: Scatter plots of the Polyakov loop in the complex plane for a thermal ensemble of randomly
chosen SU(3) field configurations illustrating the Z(3) symmetry breaking in the deconfined phase (left and
middle,[13]). The ratio p/psb for SU(3) shows that the Boltzmann limit of a free gas is not reached at
relevant temperatures beyond deconfinement. The medium remains characterized by complex interactions
(right,[14]).

It is instructive to investigate the free energy of a single static color charge g at a spatial position
x ∈ Rd which is represented by a straight fundamental Wilson line in the Euclidean time direction
closed by the compactification of the manifold and referred to as a Polyakov loop:

Lx =
1
N

TrWx,0→β (2.28)

Lattice measurements of this quantity indicate that upon lowering the temporal extent of the
manifold there exists some critical temperature Tc where 〈|L|〉 takes on a finite value due to the
spontaneous breaking of the global Z(N) center symmetry of the theory (see figure 2.1). This
renders the free energy of a qq-pair represented by the projectorQ = LxL

+
y finite at large separations

between the charge positions x, y ∈ Rd. There is thus some critical temperature where a transition
to a phase occurs where charge multiplets are no longer required to be color neutral and unbound
color charges may exist. The existence of a deconfinement phase transition can also be demonstrated
with the free energy of a static charge singlet (see chapter 6) or by an analysis of dispersion
relations. It was conjectured by Svetitsky and Yaffe [15] that any Yang-Mills theory formulated
on a compactified d + 1 dimensional Euclidean space Rd+1 with symmetry group G falls into the
same universality class as a d-dimensional model of spins transforming in the center of the group
C(G). The conjecture was verified for the SU(2) and SU(3) Yang-Mills theories in particular which
fall into the universality class of the Ising and Potts model respectively. In the case of d = 3 the
phase transition for SU(2) is thus second order while SU(3) exhibits a first order transition. Lattice
measurements of the pressure p of Yang-Mills theory (see figure 2.1)

p(T ) = T
∂

∂V
lnZ (2.29)

are well described by a glueball gas below the deconfinement phase transition [16]. Beyond the
critical temperature the Stefan Boltzmann limit of a free gas psb(T ) ∼ T 4 is only approached
at very high temperatures which indicates that Yang-Mills theory remains governed by complex
interactions in the deconfined phase. It is thus a formidable theoretical challenge to understand the
physical nature of Yang-Mills theory in the deconfined phase and to develop suitable calculation
tools for venturing into this regime. This thesis will be devoted to the development and application
of analytical and numerical techniques applicable to general statistical media governed by the
Yang-Mills Lagrangian.





Perturbation Theory





3 Schwinger-Keldysh Formalism

Imaginary time behaves like another direction in space,
histories in imaginary time can be closed surfaces, like the

surface of the Earth, with no beginning or end.

Stephen Hawking

This chapter will serve as an introduction to the path integral representation of expectation values
in general statistical quantum field theories. The Schwinger-Keldysh contour as well as the derived
diagrammatic techniques are introduced. Thermal equilibrium is discussed as a special case.

3.1 Schwinger-Keldysh Contour

To evaluate the expectation value of an arbitrary operator Q̂ in a statistical quantum system with
a density of states characterized by the statistical operator σ̂ the following relation must be solved:

〈Q̂〉 =
1
Z

Tr{σ̂Q̂} =
1
Z

∫
[Dϕ]〈ϕ|σ̂Q̂|ϕ〉. (3.1)

No restrictions are made on the nature of the operator Q̂ which may be time dependent and non-
local. The statistical operator σ̂ is defined at a time t = 0 in Minkowski space Rd,1 which will be
referred to as the initial time. The trace runs over all field eigenstates spanning the Hilbert space
of the system span {|ϕ〉} = H . To construct a path integral representation of (3.1) a complete set
of field eigenstates spanning the Hilbert space H

1 =
∫

[Dψ]|ψ〉〈ψ| (3.2)

is inserted to separate off the statistical operator:

〈Q̂〉 =
1
Z

∫
[Dϕ][Dψ]〈ϕ|σ̂|ψ〉〈ψ|Q̂|ϕ〉. (3.3)

The second amplitude is expressed as a path integral by inserting alternating sets of field and
momentum eigenstates at infinitesimal distances along a contour ζ[s], ζ : R → C, s ∈ [0, 1] in the
complex time plane. For a general introduction on the construction of path integrals see [17] for
instance. The amplitude involving the statistical operator subsequently takes the form

〈ψ|Q̂|ϕ〉 =
∫

ζ
[Dϕ]Q(ϕ)eiSζ

∣∣∣
ϕ0=ϕ,ϕ1=ψ

(3.4)

where ϕs = ϕ(ζ[s]) is the field configuration at the time t = ζ[s]. The path integral along the
contour is defined via ∫

ζ
[Dϕ] = lim

∆s→0

1/∆s∏

s=1

[Dϕs∆s ]. (3.5)
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Q̂(t)〈ψ|

〈ϕ|

Weight: 1
Z
〈ϕ|σ̂|ψ〉

eiĤt →

Complex time contour ζ

Figure 3.1: Path integral representation of the amplitude 〈ψ|Q̂({ti})|ϕ〉 using the Schwinger-Keldysh inte-
gration contour ζ. The choice of the contour is customary and constrained only by the boundary conditions
ζ(0) = ζ(1) = 0 and the necessity to pick up the time dependence of the operator {ti} ∈ ζ(s).

The action Sζ is defined as the integral of the Lagrangian L (t) of the theory, analytically continued
to the complex time plane, along the contour ζ:

Sζ =
∫

ζ
dtL (t) =

∫ 1

0
ds
∂ζ[s]
∂s

L (ζ[s]). (3.6)

The choice of the contour ζ is limited only by the following mild restrictions and otherwise com-
pletely arbitrary [18]:

1. ζ is continuous, differentiable and constrained by the boundary conditions ζ[0] = ζ[1] = 0.
The contour should not intersect with itself.

2. The contour ζ must contain the observable Q̂, i.e. if the observable can be decomposed into
local operators {Q̂i} via Q̂ =

∏
i Q̂i(ti) the contour must contain the set of points {ti} ∈ C.

Since the purpose of this technique will be to calculate observables defined at physical times, the
contour should include the real axis for practical applications. The customary choice of contour
is the Schwinger-Keldysh contour [19, 20] shown in figure 3.1 which follows the real time axis to
infinity and returns on a parallel line shifted by the amount −iε→ 0 along the imaginary time axis.
To summarize, the path integral representation of the expectation value of an arbitrary quantity Q̂
takes the following form for a system characterized by the Lagrangian L and the density of states
σ̂ in the Schwinger-Keldysh formalism:

〈Q̂〉 =
1
Z

∫

ζ
[Dϕ]σ(ϕ0, ϕ1)Q(ϕ)eiSζ(ϕ). (3.7)

The field configuration ϕs = ϕ(ζ[s]) is defined at the complex time ζ[s] on the Schwinger-Keldysh
contour. The partition function Z is defined as

Z =
∫

ζ
[Dϕ]σ(ϕ0, ϕ1)eiSζ(ϕ) (3.8)

where the action Sζ is obtained by integrating the Lagrangian L (t) along the time contour ζ. The
statistical weight σ(ϕ0, ϕ1) represents the amplitude

σ(ϕ0, ϕ1) = 〈ϕ1|σ̂|ϕ0〉. (3.9)

It is emphasized that the path integral representation derived here is completely general and can be
applied to any statistical quantum field theory. The implications as well as diagrammatic techniques
for the practical evaluation of expectation values are discussed in the following sections.
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t = 0

t→∞
1 1

2 2

Figure 3.2: Illustration of a propagator in the real-time formalism.

3.2 Real-Time Correlators

Let ϕ̂(t), ψ(t′) be two operators, which are local in time and contained in the Schwinger-Keldysh
contour ζ. To define both correlators unambiguously an index i ∈ {1, 2} is introduced to specify
whether the respective operator is located on the forward time part (i = 1) or backward part (i = 2)
of the contour. Using these indices the correlator of both operators is written in the matrix form

iG = i
(
G11 G12

G21 G22

)
=
(
〈Tψ̂(t′)ϕ̂(t)〉 −〈ϕ̂(t)ψ̂(t′)〉
〈ψ̂(t′)ϕ̂(t)〉 〈T̃ψ̂(t′)ϕ̂(t)〉

)
, (3.10)

where the first index specifies the location of ψ̂ and the second index the location of ϕ̂ on the
contour as illustrated in figure 3.2. A time or anti-time ordering is imposed by the operators T
and T̃ respectively. Note that the inclusion of the prefactor i in the definition of the correlator is
customary. According to their definition the components of the correlator are not independent and
obey the relation

G11 +G22 = G12 +G21, (3.11)

reducing the correlator to at most 3 independent entries. It is convenient for many applications to
choose a basis where this is accounted for explicitly:

G′ = R−1 ·G ·R =
(

0 GA
GR GS

)
. (3.12)

The component GR is called the retarded, while GA is referred to as the advanced and GS as
symmetric. The transformation matrix mediating between both representations is defined via:

R =
1√
2

(
1 1
−1 1

)
and R−1 =

1√
2

(
1 −1
1 1

)
. (3.13)

In a homogeneous system where the statistical operator is independent of space-time the correlator
G(x, x′) of two local operators ϕ̂(x) and ψ̂(x′) defined at the space time positions x, x′ ∈ Rd,1

will only depend on the separation between both positions G = G(x − x′). A momentum space
representation of the correlator is defined via the following Fourier transform in this case:

G(K) =
∫

dd+1xeiKµxµG(x), G(x) =
∫

dd+1K

(2π)d+1
e−iKµxµG(K) (3.14)

A homogenity of the system, which is assumed throughout this thesis, imposes the additional
constraint

GA(K) = G∗R(K) (3.15)
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on the correlator in momentum space reducing the number of independent components to two. In
thermal equilibrium there is only one independent entry of the correlator due to the Kubo-Martin
Schwinger condition.

3.3 Free Theory

As a first step in the introduction of a perturbative technique suitable for application to a general
quantum field theory out of equilibrium a free gas of scalar bosons is considered. The discussion
will loosely follow the lines of [21], and the Greens functions introduced in this section will serve as
fundamental building blocks in the perturbative series obtained for a general interacting system.
The momentum distribution f(p) of the particles constituting the gas is arbitrary with the only
prior being the restriction of particle momenta to a mass shell imposed by the dispersion relation:

ω2 = π(p), (3.16)

where π(p) = p2 for a massless particle. Let â(P ) be the creation operator for a particle with
on-shell momentum P = (ω,p) in the canonical formalism. The statement that the momentum
distribution of particles in the system is f(p) is equivalent to the formal relations:

〈â+(P )â(P )〉 = f(p) + Θ(−ω) and 〈â(P )â+(P )〉 = f(p) + Θ(ω). (3.17)

This immediately translates into the following Greens functions for particle and anti-particle prop-
agation:

G12(P ) = −2πi(f(p)+Θ(−ω))δ(ω2−π(p)) and G21(P ) = −2πi(f(p)+Θ(ω))δ(ω2−π(p)). (3.18)

In addition the retarded propagator is constrained by the dispersion relation which is expressed by
the following differential equation in position space:

[
(i∂t)2 − π(−i∇r)

]
GR(t, r) = δ(t)δ(d)(r). (3.19)

This corresponds to the momentum space form

GR(P ) = P̂
1

ω2 − π(p)
, (3.20)

where P̂ denotes the principal part. The advanced propagator in a homogeneous system is related
to the retarded propagator by complex conjugation. By making use of the identity

1
ω2 − π(p) + iε

= P̂
1

ω2 − π(p)
− iπδ(ω2 − π(p)) (3.21)

and the relations (3.12) the remaing propagators are obtained. The complete set of real-time
propagators is written in a compact form by separating vacuum and in-medium contributions:

G(P ) = Gvac(P ) +Gmed(P ). (3.22)

The vacuum component is defined as

Gvac(P ) =

(
1

ω2−π(p)+iε
0

0 −1
ω2−π(p)−iε

)
− 2πiδ(ω2 − π(p))

(
0 Θ(−ω)

Θ(ω) 0

)
(3.23)
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while the in-medium component is:

Gmed(P ) = −2πiδ(ω2 − π(p))f(p)
(

1 1
1 1

)
. (3.24)

In the context of perturbation theory the propagators of the free theory are referred to as bare
propagators. In a basis of retarded, advanced and symmetric components the bare propagator of a
scalar boson takes the form:

(
0 GA
GR GS

)
= P̂

(
0 1

ω2−π(p)
1

ω2−π(p)
0

)
− 4πiδ(ω2 − π(p))f(p)

(
0 0
0 1

)
(3.25)

It is evident that the impact of the momentum distribution f(p) on particle propagation is confined
to the symmetric component which will facilitate the discussion of in medium effects in later
chapters.

3.4 Perturbation Theory

The perturbative series approximating the expectation value of an observable Q̂ in a general quan-
tum field theory is obtained by expanding 〈Q̂〉 in powers of the coupling constants {gi}, i ∈
{1, . . . , n} of the theory truncated at some finite order of the expansion. For transparency the
construction of the series will be discussed for the example of a neutral scalar field with quartic self
interaction. The expectation value of the operator Q̂ is defined by (3.7)

〈Q̂〉 =
1
Z

∫

ζ
[Dϕ] σ(ϕ0, ϕ1)Q(ϕ)eiSζ(ϕ). (3.26)

The statistical weight σ is assumed to be the weight of a free bosonic gas, i.e. to be indepen-
dent of the coupling constant for now. The action of the theory appearing in the path integral
representation (3.7) is split into the action along the forward and backward part of the contour

Sζ =
∫

ζ
dtL (t) =

∫ ∞

0
dt(L1(t)−L2(t)) (3.27)

where the Lagrangians along the respective parts of the contour are defined as:

Li(t) =
∫

ddx
{

1
2
[
(∂µϕi)(∂µϕi)−m2ϕ2

i

]
− λ

4!
ϕ4
i + jiϕi

}
. (3.28)

The index i ∈ {1, 2} indicates whether an operator is defined on the forward or backward part of
the contour. An external current j has been added to facilitate the perturbative expansion. In the
next step the interaction term is isolated:

Sζ(ϕ) = S0
ζ (ϕ) +

∑

i∈1,2

Siζ(ϕ) where Siζ(ϕ) = (−1)i
λ

4!

∫
dd+1x ϕ4

i (x). (3.29)

Note that the initial time has been shifted to −∞ to write the interaction as an integral over the
full space-time manifold. The interaction term associated with the forward part of the contour is
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identical to the vertex of ϕ4 theory in the vacuum while the vertex for the backward part acquires
an opposite sign due to the different time direction. By expanding the exponential of the action in
powers of the coupling constant λ the expectation value is rewritten as:

〈Q̂〉 =
1
Z

∫

ζ
[Dϕ]eiS0

ζ (ϕ)σ(ϕ0, ϕ1)Q(ϕ)
∞∑

n=0

in

n!
(
S1
ζ + S2

ζ

)n (ϕ). (3.30)

In the absence of an external current this can also be written as:

Q

(
δ

δj

) ∞∑

n=0

in

n!
(S1
ζ + S2

ζ )2

(
δ

δj

)
lnZ0

∣∣∣
j=0

where Z0 =
∫

[Dϕ]eiS0
ζ (ϕ) (3.31)

It is now a straightforward exercise to derive Wicks theorem along the usual lines. The following
rules for the construction of Feynman diagrams are obtained in position space:

1. The topological structure of diagrams is identical to the vacuum case. For each interaction
a summation must be performed over vertices of type 1 and type 2 defined on the two strips
of the Schwinger-Keldysh contour. Both vertices differ by their sign and the type 1 vertex is
iλ. As usual the position of every vertex is integrated over the space-time manifold.

2. The vertices are connected by the bare propagators introduced in (3.22) transformed to
position space with a vertex of type i and a vertex of type j connected by the propagator
Gij(x).

3. The expectation value of an operator is obtained by summing over all possible diagrams for
the given set of particles and interactions constrained by the external legs representing the
operator. The symmetry factors for the diagrams as well as order of the expansion must be
taken into account as prefactors.

Upon making the transition to momentum space the integrals over the space-time manifold at each
vertex translate into momentum conservation and a momentum integration must be performed for
each unconstrained propagator. The difference to ordinary perturbation theory in the vacuum state
thus consists only in the necessity to sum over two types of vertices for each interaction. In addition
the bare propagator connecting two vertices is now a 2 × 2 matrix containing additional on shell
insertions of the momentum distribution. The situation is more complicated, if the statistical factor
itself depends on the coupling constant since σ must then be expanded in the coupling constant
as well compromising the perturbative scheme previously introduced. In thermal equilibrium the
problem is remedied by expressing the statistical prefactor as an additional branch of the integration
contour as discussed in the next section. A momentum distribution f is often imposed on a system
and directly inserted into the free propagators (3.22) again implicitly assuming the statistical
weight of a free gas. In many media a hierarchy of energy scales is encountered which often involve
the coupling constant. A typical example is the hierarchy of electric, magnetic and hard scales
encountered in equilibrium Yang-Mills theory (see the next section). This additional dependence
on the coupling invalidates naive perturbative schemes and necessitates a replacement of bare
propagators and vertices with their full (resummed) counterparts. A fundamental relation employed
for the derivation of resummed propagators and vertices is the Schwinger Dyson relation

〈 δ
δϕ̂
Q̂〉 = −i〈Q̂ δ

δϕ̂
Sζ〉 (3.32)
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where Q̂ is a polynomially bounded operator. The relation is proven by partial integration for an
arbitrary x = (t,x) ∈ C × Rd satisfying t 6= 0. Applied to the n-point functions of the theory
the Schwinger Dyson equation represents an infinite tower of relations coupling the full n-point
functions. It is important to point out that in the Schwinger-Keldysh formalism there are relations
for the derivative in (3.32) acting on the forward and backward part of the contour. The Schwinger
Dyson relation for the resummed two point function G̃ takes the following form in momentum
space

G̃ = G+G ·Π · G̃, (3.33)

where Π is the self energy resumming one particle irreducible interactions and G the bare propa-
gator. The bold print indicates matrices with respect to Schwinger-Keldysh indices. Note that the
self energy is transformed to a basis of retarded, advanced and symmetric components via:

Π′ = R−1 ·Π ·R =
(

ΠS ΠR

ΠA 0

)
. (3.34)

In this basis the following set of Schwinger-Dyson equations for the resummed two-point function
ensues:

G̃R,A = GR,A +GR,A ·ΠR,A · G̃R,A,

G̃S = GS +GR ·ΠR · G̃S +GS ·ΠA · G̃A +GR ·ΠS · G̃A . (3.35)

See chapter 5 for a practical application of these relations.

3.5 Thermal Equilibrium

As discussed in the previous chapter a system in thermal equilibrium is characterized by the sta-
tistical density operator σ̂ = e−βĤ where β = 1/T introduces the temperature T and Ĥ is the
Hamilton operator. The statistical operator is thus identical to a time evolution operator in eu-
clidean space allowing the statistical weight entering the path integral representation (3.7) to be
rewritten as

σ(ϕ0, ϕ1) = 〈ϕ1|e−βĤ |ϕ0〉 =
∫

0→−iβ
[Dϕ]e−SE

∣∣∣
ϕ0=ϕ1

. (3.36)

where SE is the euclidean action of the theory along the strip 0 → −iβ of the imaginary axis in
the complex time plane:

SE =
∫ β

0
dτL (iτ) (3.37)

The statistical weight can therefore be interpreted as a euclidean branch 0 → −iβ of the complex
time contour ζ as depicted in figure 3.3. The path integral in thermal equilibrium has the following
explicit form with the boundary condition ϕ0 = ϕ1 imposed on the first and last configuration
along the equilibrium contour. For time independent observables the real time part of the contour
can be omitted to arrive at a theory formulated on the manifold of a euclidean space time with
a compactified temporal dimension of extent β. Thermal equilibrium is a steady state of the
system. Statistical fluctuations and dissipative processes must therefore be related to ensure the
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Q̂(t)〈ϕ|

〈ϕ|

C : Real-Time (Quantum)

T : 0→ −iβ

Euclidean (Statistical)

Figure 3.3: The Schwinger-Keldysh contour in thermal equilibrium. The amplitude σ(ϕ0, ϕ1) is represented
as an additional euclidean branch of the integration contour.

time independence of the thermal distribution which leads to an additional constraint for the Greens
functions of the system called the Kubo-Martin-Schwinger (KMS) condition:

G12(K) = e−βωG21(K) (3.38)

The constraint applies for bare as well as resummed propagators and can easily be checked in
the former case by inserting the Bose distribution nB into the general expression for bare bosonic
propagators (3.22). It is straightforward to derive this condition in a position space representation
of both off diagonal components of the propagator. Let ϕ̂(x) be the creation operator for a particle
at the space-time position x = (t,x) ∈ Rd,1. The off-diagonal components of the propagator are
given by the following expressions:

iG21(x, x′) =
1
Z

Tr e−βĤ ϕ̂(x)ϕ̂(x′), iG12(x, x′) =
1
Z

Tr e−βĤ ϕ̂(x′)ϕ̂(x). (3.39)

Using the fact that the Boltzmann factor is a time evolution operator in euclidean space

e−βĤϕ(t,x)eβĤ = ϕ(t+ iβ,x) (3.40)

as well as the rotation invariance of the system in thermal equilibrium the following identity is
obtained:

G21(x, x′) = G12((t+ iβ,x), x′) (3.41)

The identity is proven by inserting (3.40) into the definition of G12 in (3.39) and using the cyclicity
of the trace. Upon performing the Fourier transform to a momentum space representation the
Kubo-Martin Schwinger condition in the form (3.38) is obtained.

3.6 Application to Yang-Mills Theory

In the final section of this chapter the application of the previously introduced techniques to Yang-
Mills theory is discussed. The Feynman rules for Yang-Mills theory in a generic non-equilibrium
setting are obtained along the lines discussed for scalar theory. An additional complication arises
when fixing to a specific gauge by the introduction of auxiliary ghost fields since these degrees of
freedom can not be viewed as physical plasma constituents. A covariant gauge [22, 23] is assumed
throughout this section. The building blocks for perturbation theory in a generic non-equilibrium
system are briefly summarized in the following:
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1. Gluon Propagator
The bare gluon propagator Gab

µν in a general covariant gauge with gauge parameter λ takes
the following form [24]

iGab
µν(K) = δab

{[
gµν + (λ− 1)

KµKν

K2

]
Gvac − PTµνGmed

}
, (3.42)

using the components of the bare scalar boson propagator introduced in (3.22). PT is the
transverse projector defined below.

2. Ghost Propagator
A gauge fixing is imposed by the introduction of an auxiliary adjoint ghost field [17]. The
propagator for each component of the ghost field is identical to the scalar boson propagator
(3.22) at vanishing temperature,

Sab = −iδabGvac, (3.43)

since ghost particles can not be interpreted as physical plasma constituents and are not
included in the density matrix of the system [25, 26].

3. Interaction Vertices
The 3- and 4-vertices for the gluon self-interaction as well as the ghost-gluon vertex are
identical to their vacuum counterparts [18] on the forward part of the contour. Type 2
vertices differ by an opposite sign.

A momentum space expansion is performed by drawing all topologically different diagrams and
summing over all possible combinations of type 1 and 2 vertices which are joined by the appropri-
ate entries of the bare real time propagators. Momentum conservation is imposed at every vertex,
and an integration is performed over the remaining unconstrained momenta appearing in the prop-
agators. A factor g is included for every ghost-gluon and gluon 3-vertex while a factor of g2 is
included for every 4-vertex. The order in g is the order of the expansion. The results from naive
perturbation theory are unreliable and typically gauge dependent due to the appearance of charac-
teristic momentum scales involving the coupling constant in many media. In thermal equilibrium
and anisotropic media (see chapter 5) the problem is remedied by performing a loop expansion
using resummed propagators and vertices as building blocks. The resummed propagators are ob-
tained from the Schwinger Dyson equation (3.32) truncated to the required order of the expansion.
This resummation is discussed in some detail in the following, assuming a thermal equilibrium, i.e.
f(p) = nB(p), for the remainder of this section. Using the previously introduced building blocks of
bare perturbation theory the resummed retarded gluon propagator in a covariant gauge is obtained
to leading order as

GµνR (K) =
1

K2 −ΠT
PµνT +

1
K2 −ΠL

PµνL −
λ

K4
KµKν (3.44)

where the projectors on longitudinal and transverse components are defined via:

P 00
T = P 0i

T = 0, P ijT = δij −
KiKj

k2
, and PµνL = −gµν +

KµKν

K2
− PµνT . (3.45)
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In thermal equilibrium the Lorentz symmetry of Yang-Mills theory at T = 0 is broken by the
appearance of a symmetry vector corresponding to the 4-velocity of the plasma. It is natural to
expect the appearance of thermal masses since the propagator has to be expanded in an extended
tensor basis including longitudinal as well as transverse components to take into account the broken
Lorentz symmetry. Using the fact that the system is homogeneous and employing the KMS-
condition the remaining propagators are obtained as:

G̃A = G̃∗R and G̃S = −2i(eβω + 1)nB(ω)ImGR. (3.46)

The retarded self energy has been decomposed into longitudinal and transverse components

ΠR = PLΠL + PTΠT (3.47)

which take the following form for soft external momentum K � T where loop integrations are
dominated by hard internal momenta ∼ T :

ΠL = m2
D

[
1− ω2

k2

] [
1− ω

2k
log

ω + k

ω − k

]
, ΠT =

m2
D

2
ω2

k2

[
1− ω2 − k2

2ωk
log

ω + k

ω − k

]
. (3.48)

The advanced and symmetric self energies are obtained from the KMS condition and the relation

ΠA(K) = Π∗R(K). (3.49)

An analysis of the dispersion relations of the gluon at leading order leads to the identification of
the following characteristic scales of the Yang-Mills plasma:

1. Hard Momentum Scale: k ∼ T
The characteristic momentum scale for gluons in a Yang-Mills plasma corresponds to the
temperature T of the medium. The corresponding length scale 1/T is the average inter
particle spacing.

2. Electric Scale: k ∼ gT
The thermal mass of soft longitudinal gluons is given by the Debye mass mD ∼ gT . The ex-
change of longitudinal gluons is significantly suppressed below this threshold which translates
into a suppression of electrical interactions at distances larger than 1/mD.

3. Magnetic Scale: k ∼ g2T

Magnetic interactions, which are the most far reaching interaction in the Yang-Mills plasma,
experience a dynamical screening over distances larger than 1/g2T .

It is important to discuss the appearance of plasma scales involving the coupling constant in more
detail at this point. Feynman diagrams involving these scales acquire an additional dependence on
the coupling constant which compromises a naive perturbative expansion in the coupling constant.
It is found in particular that the resummed propagators and vertices obtained from the tower of
Schwinger-Dyson relations are of the same order as the bare ones. It is therefore necessary to expand
in the resummed Greens functions and vertices, i.e. to perform a loop expansion. Systematical use
can be made of the fact that loop integrations for Feynman diagrams with soft external momenta
are dominated by contributions from the hard momentum region. It is thus possible to expand
integrands in the quotients of external and internal momenta. The resulting expansion scheme is
referred to as hard thermal loop (HTL) approximation and discussed for the euclidean theory in
[18]. For a discussion of HTL improved perturbation theory in the real-time formalism see [27].
Details of this scheme will be highlighted as required in following chapters.



4 Quarkonia at Finite Temperature

Facts are the air of scientists.
Without them you can never fly.

John Dewey

While attempts to calculate the resonances of bound states in a quark-gluon plasma have a long
history, a definition of the static potential in a thermal medium from first principles has only been
attempted recently. In the following the techniques presented in the preceding chapter are applied
to derive a leading-order expression for the static potential in a generic (non-)equilibrium plasma
and to obtain the quarkonium spectral function in thermal equilibrium. The findings are discussed
in detail in the following articles: [28, 29, 30, 31].

4.1 A Model System for Confinement

Mesons constituted by a pair of heavy quarks of the same flavor, referred to as quarkonia, are the
most simple bound states of QCD. The symmetric nature of these systems and the high mass of
their constituents make them amenable to the description by a nonrelativistic Schrödinger equation

i∂tψ(r) =
(
−4r

M
+ V (r)

)
ψ(r) (4.1)

where M is the mass of the charm or bottom quark and ψ the quark wave-function. Due to the
slow movement of constituent quarks the effective potential V (r) is identical to the static potential
introduced in (2.22) allowing quarkonium resonances to be related directly to the confinement
properties of the underlying theory. The discovery of the J/ψ in 1974 [32, 33] and subsequent
confirmation of QCD predictions for the effective potential was a key element in establishing QCD
as the correct theory for the strong interactions. Ever since their discovery quarkonia have retained
their role as a model system for the confinement properties of QCD and are expected to provide
valuable clues on the nature of the deconfinement transition observed in heavy-ion collisions. In
1987 Matsui and Satz [34] proposed the following effective potential at finite temperature assuming
the Schrödinger equation (4.1) to remain valid in a thermal setting

V (r) = −g
2CF

4π
e−mDr

r
(4.2)

where r = |r| is the distance between the constituent quarks and mD the Debye mass. The flux
tube, connecting the constituent quarks is assumed to vanish while the Coulomb component of the
potential, which arises from single gluon exchange, takes the form of a Yukawa potential due to
the generation of a gluon mass mD beyond deconfinement. Since the leading order Debye mass is
of the form mD ∼ gT , the screening increases with the temperature leading to a widening of the
quarkonium resonance which is referred to as the melting of quarkonium.
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4.2 The Static Potential in a Thermal Medium

It remains unclear to the present day how to derive the binding energy and decay width of bound
state resonances in a QCD-plasma from first principles. In a recent series of papers [28, 37, 29, 35]
the heavy quark static potential was extended to thermal media using the Schrödinger equation
for the quarkonium correlator as a starting point. Formally the time evolution of the quarkonium
correlator

iC21(t, r) = =
∫

d3x

〈
ψ(t,

x+ r
2

)γµWψ(t,x− r
2

)ψ(0,0)γµψ(0,0)
〉

(4.3)

is expected to be governed by the following equation and initial condition which can easily be
verified in NRQCD at leading order:

i∂tC21(t, r) =
(

2M − 4r
M

+ V (t, r)
)
C21(t, r) with iC21(0, r) = −6Nδ(3)(r). (4.4)

M denotes the mass of the constituent quarks and W represents a straight Wilson line connecting
the quark fields at time t. The potential V (t, r) is a complex quantity with the imaginary part
parametrizing the damping effects induced by the medium to generalize the concept of a potential
to a thermal setting. In the limit of infinite quark masses the amplitude C21(t, r) is represented by
the expectation value of a Wilson loop of spatial extent r and temporal extent t after introduction
of another point-splitting. Note that the correlator C21(t, r) can be replaced with the time ordered
correlator C11(t, r) at positive times to avoid ambiguities due to time and path ordering:

iC11(t, r) =
1
N

Tr < > . (4.5)

The following Schrödinger equation ensues after scaling out the phase factor associated with the
quark mass:

i∂tC11(t, r) = V (t, r)C11(t, r). (4.6)

The real-time static potential is subsequently defined as the infinite time limit of the potential
V (t, r):

V (r) = lim
t→∞

V (t, r) = lim
t→∞

i∂tC11(t, r)
C11(t, r)

. (4.7)

It is important to emphasize that the relation (2.21) can not simply be continued to Minkowski
space. The real-time definition of the static potential is motivated instead by noting that a non-
vanishing potential in the infinite time limit will generate a dominant peak in the spectral function
of the static correlator at low energies [37]. In the following section a leading order expression for
the real-time static potential in an arbitrary medium is derived by expanding the Wilson Loop
(4.5) with respect to the gauge coupling. It is shown that the real-time static potential to leading
order consists of two components obtained as integral transforms of the retarded and symmetric
HTL gluon propagators. In thermal equilibrium these two components will translate into a real
and imaginary part of the potential parametrizing the binding and decay of the quarkonium ground
state.
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4.3 Expansion of the Wilson Loop

For convenience the Wilson loop will be assumed to be oriented in the z-direction for the following
steps of the derivation. The series of diagrams resulting from an expansion of the Wilson Loop
to first order in g2 is briefly listed below with G̃ denoting the resummed gluon propagator in the
medium under consideration. The following contributions from the spatial Wilson lines are readily
summed up to a compact expression [K = (ω,k)]

1
N

Tr 〈 + + 〉

= 2g2CF

∫
d4K

(2π)4

e−iωt − 1
(k3)2

(1− cos k3r)iG̃33
11(K),

while the diagrams containing only contributions from the temporal Wilson lines can be summed
up in an analogous fashion introducing the longitudinal propagator into the expression for the real
time static potential:

1
N

Tr 〈 + + 〉

= 2g2CF

∫
d4K

(2π)4

eik3r − 1
ω2

(1− cosωt)iG̃00
11(K).

The final set of diagrams consists of the cusp contributions correlating the spatial and temporal
Wilson lines which add up to the following expression:

1
N

Tr 〈 + + . . .〉

= 4g2CF

∫
d4K

(2π)4

1
ωk3

(1− cosωt)(1− cos k3r)iG̃03
11(K).

Summing up all diagrams and employing the definition (4.7) the potential V (r) is represented by
the leading order expression listed in the following:

V (r) = lim
t→∞

2g2CF

∫
d4K

(2π)4
{ω e−iωt

(k3)2
(1− cos k3r)iG33

11(K)

−eik3r − 1
ω

sinωtG00
11(K) +

2 sinωt
k3

(cos k3r − 1)G03
11(K)}.

The sum is easily reduced to a more simple form by employing the following representation of the
δ-distribution

δ(ω) = lim
t→∞

sinωt
πω

(4.8)

leading to a generic expression for the real-time static potential in arbitrary (non-)equilibrium
systems upon removing the restriction that the Wilson loop points in the z-direction:

V (r) = g2CF

∫
d3k

(2π)3
(1− eik·r)G̃00

11(ω = 0,k). (4.9)
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4.4 Static Potential and Relation to the Free Energy

To obtain an explicit expression for the real-time static potential in thermal equilibrium, it is
convenient to decompose the propagator G̃11 into the retarded and symmetric propagator (3.12):

G̃11 = ReG̃R +
1
2
G̃S . (4.10)

The retarded propagator G̃R in thermal equilibrium is given by the following expression [18, 36] in
a general covariant gauge

G̃µνR (K) =
1

K2 −ΠT
PµνT +

1
K2 −ΠL

PµνL −
λ

K4
KµKν (4.11)

where the longitudinal and transversal self-energies [28]

ΠL(K) = m2
D

[
1− ω2

k2

] [
1− ω

2k
log

ω + k

ω − k

]
ΠT (K) =

m2
D

2
ω2

k2

[
1− ω2 − k2

2ωk
log

ω + k

ω − k

]
(4.12)

develops an imaginary part for ω < k. The physical branch of the logarithm is Im log(ω+ k)/(ω−
k) = −πΘ(k2 − ω2). The transversal and longitudinal projectors PµνT and PµνL are listed in (3.45).
The symmetric propagator is readily obtained from the retarded propagator by employing the
Kubo-Martin-Schwinger condition which can be written in the form presented below using the
constraint (B.2) as well as the homogenity of the system:

G̃S(K) = 2inB(ω)(eβω + 1)ImG̃R(K). (4.13)

The analytic expression for the real-time static potential is finally obtained by inserting the static
limit of the propagators into (4.9) with the real part corresponding to the Debye screened potential
(4.2):

V (r) = g2CF

∫
d3k

(2π)3

[
1− cos k3r

]




1
k2 +m2

D︸ ︷︷ ︸
Retarded

−i
πm2

D

β

1
k(k2 +m2

D)2

︸ ︷︷ ︸
Symmetric




= − g2CF

4π

(
mD +

e−mDr

r

)

︸ ︷︷ ︸
Re(V ),Retarded contribution

−i
g2TCF

2π

∫ ∞

0

dzz
(z2 + 1)2

(
1− sin (z mDr)

z mDr

)

︸ ︷︷ ︸
Im(V ),Symmetric contribution

(4.14)

A calculation of the corresponding potential for a qq-pair transforming in the adjoint representation
is in preparation [42]. Being the integral transform (4.9) of the symmetric propagator the imaginary
part is associated with Landau damping. It is important to emphasize that, while the analytic
continuation of the potential V (t = −iβ, r) is identical to the singlet free energy, the real-time
static potential does not correspond to this quantity. The static potential at finite temperature, as
defined here from first principles, can in fact not be related in a straightforward way to an analogous
quantity in euclidean space. It is nevertheless instructive to measure the singlet free energy in a
non-perturbative setting to estimate the extent to which the full real part of the static qq-potential
will deviate from the leading-order result. This measurement is presented in chapter 6.
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Figure 5: The physical dilepton production rate, Eq. (2.3), from charmonium (left) and

bottomonium (right), as a function of the energy, for various temperatures. The mass M

corresponds to the pole mass, and is subject to uncertainties of several hundred MeV; we use

the intervals 1.5...2.0 GeV and 4.5...5.0 GeV to illustrate the magnitude of the corresponding

error bands. The low mass corresponds to the upper edge of each error band.

7. Conclusions

The purpose of this paper has been to experiment, as generally as possible, with the resummed

perturbative framework that was introduced in refs. [24, 25], in order to offer one more handle

on the properties of heavy quarkonium in hot QCD, thus supplementing the traditional

approaches based on potential models and on lattice QCD.

The key ingredient of our approach is a careful definition of a finite-temperature real-time

static potential that can be inserted into a Schrödinger equation obeyed by certain heavy

quarkonium Green’s functions. The potential in question, denoted by limt→∞ V>(t, r), has

both a real and an imaginary part (cf. Eq. (2.6)). An important conceptual consequence

from the existence of an imaginary part is that heavy quarkonium should not be thought of

as a stationary state at high temperatures, but as a short-lived transient, with the quark and

antiquark binding together only for a brief moment before unattaching again.

On the more technical level we have noted that, in terms of Eq. (4.17), the vector channel

spectral function gets a contribution only from the S-wave, l = 0, while the scalar channel

spectral function gets a contribution both from the S-wave and P-wave, l = 0, 1. Here we

differ from the potential model analysis in ref. [8] where, as far as we can see, only l = 1

22

Figure 4.1: Left: Spectral function for bottomonium at rest obtained from a numerical solution of the
Schrödinger equation (4.4) using the Real-Time Static Potential [37]. Right: The expected quarkonium peak
in the µ−µ+-emission spectrum from dissociation of quarkonium in the vector channel [38].

4.5 Quarkonium Spectral Function and Physical Signatures

To obtain the spectral function ρ(ω) for quarkonium at rest the real-time static potential is rein-
serted into the finite-mass Schrödinger equation (4.4) to calculate the correlator:

iC21(t,0) = . (4.15)

The spectral function is subsequently obtained from the correlator via [37]:

ρ(ω) =
i
2

∫ ∞

−∞
dteiωt {C21(t,0)− C12(t,0)} =

1
2

(
1− e−βω

)∫ ∞

−∞
dteiωtiC21(t,0) (4.16)

The numerical solution of the Schrödinger equation (4.4) and the extraction of the correlator
(4.15) is discussed in [37] (see also chapter 5). Fig. 4.1 (left) depicts the shape of the bottomonium
resonance assuming a bottom quark mass of mb = 4.5 GeV . The melting of the resonance peak with
increasing temperature is induced by the imaginary part of the potential (4.14). The quarkonium
spectral function ρV in the vector channel is directly related to the dilepton rate due to dissociation
of quarkonium at rest [39, 40, 41]

dNl−l+

d4xd4K
=

2c2e4

3(2π)5ω2

(
1 +

2m2
l

ω2

)(
1− 4m2

l

ω2

) 1
2

nB(ω)(−ρV (ω)). (4.17)

which has been calculated in [38]. The electric charge of the lepton family l is denoted as e, ml

is the lepton mass and c ∈ {−1
3 ,

2
3} is the electromagnetic coupling of the constituent quarks.

The expected quarkonium peak in the µ−µ+-emission spectrum is shown in fig. 4.1 (right) for
bottomonium.





5 Anisotropic Quark-Gluon Plasma

In physics you don’t have to go around making trouble for
yourself. Nature will do this for you.

Frank Wilczek

A plasma with an anisotropy imposed on the momentum distribution of the system is considered
and the real time static potential for quarkonia studied. The distribution function is normalized so
as to preserve the particle number in an ideal gas as required in the Schwinger-Keldysh formalism.
Contrary to recent findings without this normalization, a weak anisotropy does not lead to an
increase in the melting temperature for bound states. To test for the maximal effect, the gluonic
medium is also investigated in the limit of an asymptotically strong anisotropy. The spectral func-
tion of quarkonium is calculated for this case and found to be in remarkable qualitative agreement
with the corresponding results for an isotropic medium. These findings were published in [43].

Figure 5.1: Comparison of the angular momentum distribution f(k) at a fixed momentum k in an isotropic
medium (left) and the deformed angular distribution in an anisotropic gluonic medium with ξ > 0 (right).

5.1 Model System and Purpose of the Calculation

The QCD-plasma with an anisotropic momentum distribution has been subject to several recent
investigations as a simple model for the early stages of heavy ion collisions [44, 45, 46]. Such a
system is obtained by replacing the isotropic momentum space distribution functions by

f(k, ξ) = N(ξ) fiso

(√
k2 + ξ(k · n)2

)
, (5.1)

which removes modes with momentum components along the direction of the anisotropy, n. Here, ξ
parametrizes the strength of the anisotropy and N(ξ) is a normalization factor with N(ξ = 0) = 1.
Interest has particularly focused on the question how such an anisotropy influences the dissociation
of non-relativistic quarkonium systems within potential model studies [36, 47, 48]. The general
approach in those works was to consider small anisotropies ξ ≤ 1 and to calculate the correction
to the propagators and the static potential to first order in ξ. The effect of the anisotropy on the
normalization was neglected, i.e. N(ξ) ≡ 1 in those works, and with the exception of [49] all employ
the equilibrium Kubo-Martin-Schwinger (KMS) condition, which strictly speaking does not hold in
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the anisotropic case. The general conclusion of those investigations was that the anisotropy tends
to decrease the effect of Landau damping and thus to increase the dissociation temperature.

In this paper the extent is assessed to which these results are modified by taking a ξ-dependent
normalization factor into account and solving again the Dyson-Schwinger equations for the non-
equilibrium system. This is motivated by the fact that modifying only the argument of the isotropic
distribution function in (5.1) simply removes particles/modes with momentum components along
the anisotropy direction, i.e. the plasma gets diluted with growing ξ. The momentum distribution
defines the thermal parts of the bare propagators in the real-time formalism and thus parametrizes
a gas of non-interacting particles. Hence, the anisotropy must not affect the average number density
of particles. This results in a normalization condition for all ξ [50, 45],

n =
∫

d3p

(2π)3
fiso(p) !=

∫
d3p

(2π)3
f(p, ξ) , (5.2)

with the solution N(ξ) =
√

1 + ξ. For example, the integral over the Bose distribution function,
fiso(p) = nB(p), evaluates to n = 3.606T 3/(2π)2. Using N(ξ) = 1 for ξ 6= 0 gives instead
n = {2.55, 1.09, 0.3}T 3/(2π)2 for ξ = {1, 5, 100}, respectively. Even for “small” anisotropy ξ = 1,
the dilution amounts to a significant 30% and affects observables. It is found that the modified
normalization largely compensates the effects observed previously, such that for ξ = 1 there is little
difference in the static potential between the isotropic and anisotropic cases. To underline this
finding the ‘maximal anisotropy effect’ is studied by considering the limit ξ → ∞, in which the
plasma is confined to a thermal plane in momentum space perpendicular to the symmetry axis of the
system. Somewhat surprisingly, also in this case the quarkonium spectral function is qualitatively
in agreement with the isotropic situation. For simplicity a purely gluonic system is considered, the
inclusion of light fermions is straightforward and will merely introduce a modification to self energy
prefactors [51].

5.2 The Static Potential, Propagator and Self Energy

For our calculations we use the Keldysh-Schwinger real time formalism [21], similar to [49]. There
one considers matrices of correlation functions, Cij , with indices i, j ∈ {1, 2} denoting the forward
and backward portions of the Keldysh contour. The real time static potential in a thermal medium
may be defined through the quarkonium Wightman function in the infinite quark mass limit, i.e. the
Wilson loop in Minkowski time evaluated in a thermal bath [28] , whose time evolution is governed
by a ‘Schrödinger equation’:

iC21(t, r) =
1
N

Tr < > , i∂tC21(t, r) = V (t, r)C21(t, r) . (5.3)

The static potential corresponds to the large time limit of this evolution, where the Wightman
function may be replaced by C11,

V (r) = lim
t→∞

V (t, r) = lim
t→∞

i∂tC11(t, r)
C11(t, r)

, (5.4)

and to leading order in perturbation theory is equivalent to a matching coefficient appearing in
a non-relativistic effective theory for finite temperatures [52, 35, 53]. Calculating the Feynman



CHAPTER 5. ANISOTROPIC QUARK-GLUON PLASMA 33

diagrams corresponding to the Wilson loop through order g2 in the real time formalism, one finds
the generic expression for the potential in an arbitrary (non-)equilibrium system [31],

V (r) = g2CF

∫
d3k

(2π)3
(1− eik·r)G̃00

11(ω = 0,k)

= g2CF

∫
d3k

(2π)3
(1− eik·r)

(
1
2
G̃00

S + ReG̃00
R

)
. (5.5)

The tilde indicates a HTL-resummation of the gluon propagator. Thus we need to evaluate the
resummed retarded and symmetric propagators for the various degrees of anisotropy we wish to
discuss. These are solutions to the Dyson-Schwinger equations,

G̃R = GR +GR ·ΠR · G̃R,

G̃S = GS +GR ·ΠR · G̃S +GS ·ΠA · G̃A +GR ·ΠS · G̃A . (5.6)

The bold face notation indicates matrices in Lorentz and colour space. In the following all colour
matrices are ∼ δab and will be suppressed to simplify the notation. The retarded self energy for an
anisotropic plasma has been calculated in HTL-approximation in [54], and the retarded propagator
in a general covariant gauge in [36]. The resummed retarded gluon propagator in a general covariant
gauge can be written in the form

G̃µνR (K) = ∆A[Aµν − Cµν ] + ∆G

[
(K2 − α− γ)

ω4

K4
Bµν + (ω2 − β)Cµν + δ

ω2

K2
Dµν

]
− λ

K4
KµKν .

(5.7)
Here the symmetry vector nµ = (0,n) represents the anisotropy, K = (ω,k), λ is the gauge
parameter and the electric and magnetic propagators are

∆−1
G = (K2 − α− γ)(ω2 − β)− δ2[k2 − (n ·K)2] ,

∆−1
A = K2 − α . (5.8)

Explicit expressions for the tensors A−D and the structure functions α(K, ξ)−δ(K, ξ) for arbitrary
anisotropies are listed in Eqs. (2–5) in [36] and Eqs. (B1–B4) in [44], respectively. Note however,
that the structure functions given there are for N(ξ) = 1 and need to be multiplied by N(ξ) =√

1 + ξ for the purposes of this study. Since the interest is in applications for potential models, it is
expedient to take the static limit ω → 0 already at this stage to facilitate the calculations. In this
case the bare symmetric propagator vanishes and, using the fact that the retarded and advanced
propagators are related via G̃µνA = (G̃νµR )∗ in a general homogeneous system [21], the second of
equations (5.6) simplifies to (see also [51])

G̃S = G̃R ·ΠS · G̃∗R . (5.9)

The propagator in the static limit is (with the notation k2 ≡ k2, cos θk ≡ n · k/k)

G̃µνR (ω = 0,k) = ∆A[Cµν −Aµν ] + ∆G

[
(k2 +m2

α +m2
γ)Bµν − (k2 +m2

β)Cµν + i
m2
δ

sin θk
Dµν

]

− λ

k4
KµKν (5.10)
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with now
∆−1

A = k2 +m2
α, ∆−1

G = (k2 +m2
α +m2

γ)(k2 +m2
β)−m4

δ . (5.11)

The tensor basis is simplified and takes the form

A0µ(k) = Aµ0(k) = 0 Aij(k) = δij − kikj/k2 Bµν(k) = δµ0δν0

C0µ(k) = Cµ0(k) = 0 Cij(k) = ñiñj Dµν(k) = δµ0ñ
ν + δν0ñ

µ
(5.12)

with x̃i = Aijxj . A rescaling of the tensors ω2

k2B
µν → Bµν , ω

k2D
µν → Dµν , as well as −ω2

k2 ∆G →
∆G,−∆A → ∆A has been introduced with respect to (5.7,5.8) to keep all components of the
retarded propagator explicitly finite in the static limit. The effective masses are the static limits of
the structure functions [44],

m2
α = lim

ω→0
α , m2

β = lim
ω→0
− k

2

ω2
β , m2

γ = lim
ω→0

γ , m2
δ = lim

ω→0

k2 sin θk
ω

Im(δ) . (5.13)

5.3 Weak Anisotropy, ξ ≤ 1

In order to discuss the effect of a weak anisotropy, the distribution function (5.1) is employed,
including the non-trivial normalization with N(ξ), and the resummed propagators expanded up to
linear order in ξ. For the longitudinal component of the retarded propagator appearing in (5.5)
the following form is derived

G̃00
R (ω = 0,k) =

k2 +m2
α +m2

γ

(k2 +m2
α +m2

γ)(k2 +m2
β)−m4

δ

. (5.14)

All ξ-dependence resides in the effective masses. To linear order the dimensionless combinations
m̂2
x = m2

x/m
2
D read

m̂2
α = −ξ

3
cos2 θk, m̂2

β = 1 + ξ(cos2 θk −
1
6

), (5.15)

m̂2
γ =

ξ

3
sin2 θk, m̂2

δ = −ξ π
4

sin θk cos θk . (5.16)

Note that m̂2
β differs from the expression given in [44] due to the normalization factorN(ξ) =

√
1 + ξ

in the distribution function (5.1). The retarded propagator to linear order then is

G̃00
R =

1
k2 +m2

D

− ξ m2
D

(k2 +m2
D)2

(cos2 θk −
1
6

) . (5.17)

Expanding also the static potential, V (r) = V0(r) + ξV1(r) + . . ., the correction of the real part
due to the anisotropy is found to be,

ReV1(r) = g2CF m
2
D

∫
d3k

(2π)3
(1− cos(k · r))

1
(k2 +m2

D)2

(
cos2 θk −

1
6

)
. (5.18)

For the imaginary part the symmetric propagator and the symmetric self-energy are needed in
addition, cf. (5.9). In the static limit and for soft external momenta ki � pi the latter takes the
form [51]

iΠµν
S = 8πg2N

1
k

∫
d3p

(2π)3
vµp v

ν
pf(p)(1 + f(p+ k))δ(vp · vk) . (5.19)



CHAPTER 5. ANISOTROPIC QUARK-GLUON PLASMA 35

Straightforward calculation gives the following expansion for the symmetric propagator

G̃00
S = −i

2π
k(k2 +m2

D)2

m2
D

β

(
1 + ξ

[
π2 − 3ζ(3)

π2
− 3

4
sin2 θk

])

+iξ4π
m4
D

β

1
k(k2 +m2

D)3
(cos2 θk −

1
6

) . (5.20)

where ζ is the Riemann zeta function. For N(ξ) = 1 the first fraction in square brackets is absent
and 1/6→ 2/3 in the last line. In this case the symmetric propagator from [49] is reproduced. The
leading correction to the imaginary part of the potential due to the anisotropy is given by

ImV1(r) = g2CF

∫
d3k

(2π)3
(1− cosk · r)

1
2
∂

∂ξ
G̃00
S

∣∣∣
ξ=0

. (5.21)

The remaining integrations can be done numerically, and the results for the real and imaginary
parts of the static potential are shown in figure 5.2, where the angle between r and the anisotropy
axis has been defined: cos θr ≡ r · n/r. For the normalization N(ξ) = 1 it has been observed that
an increasing anisotropy lowers the real part of the static potential towards a Coulomb potential
[36]. However, this follows trivially for ξ → ∞ since the medium is disappearing in this case, and
hence mD → 0. By contrast, the effect of the anisotropy is much weaker when the normalization
N(ξ) =

√
1 + ξ is chosen. Note also, that in this case the potential is even slightly enhanced at

small distances. The difference between the two normalizations is even more pronounced in the
imaginary part, which is caused by Landau damping and introduces a broadening of the spectral
function [37]. A weaker damping effect is seen for N(ξ) = 1, leading to the conclusion that bound
states should melt at higher temperatures [47, 48, 49]. For N(ξ) =

√
ξ + 1, this effect is modified

and persists only at very large distances. For smaller distances, on the scale of the bound states,
there is only very little difference to the isotropic case. Uncertainties due to non-perturbative
corrections to the diffusive physics underlying the existence of the imaginary part were found to be
significantly larger in recent studies [29, 55].

5.4 Strong Anisotropy, ξ →∞

Having seen that, with the properly normalized distribution function, the effects of a weak momen-
tum space anisotropy on the static potential are rather small, we are now asking how a maximally
anisotropic plasma would behave. To begin the gluon propagator in a general covariant gauge is
revisited, (5.7), to discuss some aspects of the dispersion relations which have been derived in [45].

In the limit of maximal anisotropy, the structure functions α(K) − δ(K) take on an analytic
form [45], facilitating a numerical evaluation of the dispersion relations of the retarded gluon
propagator, ∆G = 0 and ∆A = 0. The associated modes are referred to as electric and magnetic
modes respectively (for an analysis of dispersion relations at arbitrary anisotropies see [44, 45]).
They can be conveniently expressed by introducing effective pole masses m(k), which satisfy the
relation

ω2 = k2 +m2(k) (5.22)

at poles and branch cuts of the electric and magnetic propagators. The results from a numerical
determination of the pole masses are illustrated in figure 5.3 and summarized in the following. The
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Figure 5.2: Real (left) and imaginary (right) part of the static potential. The blue curve corresponds to
the isotropic plasma, ξ = 0, the other curves to ξ = 1 with normalization factor N(ξ) = 1 (orange) and
N(ξ) =

√
1 + ξ (red). The potential is evaluated for θr = π

2 (solid) and θr = 0 (dashed).

dynamical screening masses of the lowest electric mode as well as the magnetic mode are found to be
comparable in magnitude to the screening masses in an isotropic medium with a moderate angular
dependence of both masses towards higher momenta. The findings indicate that strongly coupled
interactions over large distances are suppressed leading to a deconfinement of colour charges. This
is a prerequisite for the possibility of a consistent perturbative treatment using the HTL approach.

For θk < π/4 the gluon propagator has additional poles along the imaginary ω-axis indicating
the existence of unstable field modes. The instability, which is present in a general anisotropic
QCD plasma, is speculated to be responsible for the rapid isotropisation of the quark gluon plasma
observed in heavy ion collisions [56]. The growth rate γ = Im(ω) of unstable modes is observed to
increase and to peak at higher momenta towards the symmetry axis.

5.5 The Static Potential

Next, the static limit of the maximally anisotropic propagator is taken in order to discuss the static
potential. At maximal anisotropy the appropriate effective masses read:

m2
α = − πm2

D

4 tan2 θk
, m2

β =
πm2

D

4
, m2

γ =
πm2

D

4

(
1 +

2
tan2 θk

)
, m2

δ =
πm2

D

4
cos θk
sin2 θk

. (5.23)

The symmetric self energy, Eq. (5.19), needs to be reevaluated as well. Since the momentum
distribution function for the anisotropic medium f(p) becomes sharply peaked around vp · n = 0
upon sending ξ to infinity, the following identity may be derived [57]:

lim
ξ→∞

f(p) = δ(vp · n)
∫ ∞

−∞
dx nB(p

√
1 + x2) = δ(vp · n)h(p). (5.24)
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Figure 5.3: The effective masses of stable electric and magnetic modes (shown on the left for θk = π/4 and
k ≤ mD) indicate a screening of long range interactions. For θk < π/4 the gluon propagator has poles on
the imaginary ω-axis due to the Weibel instability. The growth rate γ = Im(ω) of the associated unstable
modes (right) increases towards the symmetry axis.

The self energy thus takes the following analytically tractable form:

iΠµν
S (k) =

8πg2N

k

∫
d3p

(2π)3
vµp v

ν
p h(p)δ(vp · n)δ(vp · vk)

(
1 + h(p)

|p+ k|
k

δ(vk · n)
)
. (5.25)

The Bose enhanced part of the self energy is amplified by a factor |p + k|/k ≈ p/k which will
translate into an amplification by T/k, indicating that scattering processes are dominated by Bose
enhanced scattering into the thermal plane. The self energy is diagonal,

iΠ00
S = iΠjj

S =
m2
D

kβ sin θk

(
c‖ +

c⊥
kβ
δ(vk · n)

)
, kiΠ

ij
S = niΠ

ij
S = 0 (5.26)

with m2
D = N

3 g
2T 2 and the prefactors cx are obtained from the following integrals

c‖ =
6
π2
β3

∫ ∞

0
dp p2h(p) = 2.9231 . . .

c⊥ =
6
π2
β4

∫ ∞

0
dp p3h2(p) = 3.4230 . . . (5.27)

The symmetric propagator can now be calculated from (5.9) in a straightforward fashion. Its
longitudinal component can be separated in contributions dominated by external momenta per-
pendicular and parallel to the symmetry axis

iG̃00
S (k) = iG̃⊥S (k) + iG̃‖S(k)

iG̃⊥S (k) =
c⊥m2

D

β2

1
k2(k2 + Π

4m
2
D)2

δ(cos θk)

iG̃‖S(k) =
c‖m2

D

βk sin θk

(k2 +m2
α +m2

γ)2

[(k2 +m2
α +m2

γ)(k2 +m2
β)−m4

δ ]
2
. (5.28)
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Figure 5.4: The real part of the anisotropic static potential, normalized to V (∞) = 0 and the imaginary
part shown as a function of the radial separation r for N = 3 and g2 = 3. The cylindrical symmetry of the
anisotropic imaginary part is illustrated by varying θr.

The first component corresponds to Bose enhanced scattering into the thermal plane and is en-
hanced in T

k � 1 while the second component, corresponding to scattering away from the thermal
plane, is suppressed even for sin θk → 0 due to the diverging effective mass m2

δ in this limit. Con-
tributions from the symmetric propagator will therefore be dominated by momenta perpendicular
to the symmetry axis,

iG̃00
S (k) ≈ iG̃⊥S (k) . (5.29)

The static potential in a maximally anisotropic medium can now be discussed, by inserting these
ingredients into (5.5). Upon choosing a spherical coordinate system with the anisotropy vector
n pointing in the z-direction, cos θr ≡ r · n/r and with the abbreviation x = cos θk, one angular
integration can be performed immediately leading to

ReV (r) = g2CF

∫
dk dx
(2π)2

(
1− J0(kr

√
1− x2 sin θr) cos (krx cos θr)

)

×
k2(k2 +m2

α +m2
γ)

(k2 +m2
α +m2

γ)(k2 +m2
β)−m4

δ

, (5.30)

where Jn is the Bessel function of the first kind. The expression is readily evaluated numerically
using standard integration routines [58]. The potential contains a linear divergence which we
subtract by normalizing V (|r| → ∞) = 0. The resulting real part displays an approximate spherical
symmetry. The radial profile, as depicted in figure 5.4 for N = 3, turns out to be in good agreement
with the standard Debye screened potential. For the imaginary part we obtain in a similar way

ImV (r) = −3CFm
4
Dc
⊥

8Nπ2

∫
dk (1− J0(kr sin θr))

1
(k2 + π

4m
2
D)2

. (5.31)

The imaginary part thus only depends on the separation r sin θr of the static quark pair in the
thermal plane perpendicular to the anisotropy vector. Unlike the previously studied quantities the
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imaginary part turns out to be quantitatively different from its isotropic counterpart [28]. This is
because the damping of the static quark correlator is significantly weakened in the collision plane
for reasonable values of the bare coupling, while no additional damping occurs along the anisotropy
axis.

5.6 Quarkonium Spectral Function

In order to compare a more physical quantity between the isotropic and anisotropic cases, the
quarkonium spectral function is calculated as well. Since this has not been done before for
anisotropies, it is presented in some detail. For a qq̄ system with finite constituent mass M the
following Schrödinger equation must be solved [28],

i∂tC21(t, r) =
(

2M − 4r
M

+ V (r)
)
C21(t, r), iC21(0, r) = −6Nδ(3)(r) (5.32)

where V (r) is the real time static potential discussed in the previous sections. For r = 0 the
quarkonium correlator coincides with the quark current correlator C21(t,0) = 〈Jµ(t)Jµ(0)〉 where
Jaµ = ψγµT

aψ. The quark pair is assumed to be created at time t = 0 and the initial condition for
the Schrödinger equation (5.32) ensues from the afore mentioned relation. The spectral function
for quarkonium at rest ρ(ω) can be calculated from the difference of the two off-diagonal elements
of the heavy-quarkonium correlator,

ρ(ω) =
∫

dt e−iωt {iC21(t,0)− iC12(t,0)} . (5.33)

In thermal equilibrium both components are related via the Kubo- Martin- Schwinger condition,
which does not hold for the system under consideration. In the operator formalism the difference
between the two correlators takes the form

C21(t,0)− C12(t,0) =
1
Z

Tr
{
σ̂Ĵµ(t,0)Ĵµ(0,0)

}
− 1
Z

Tr
{
σ̂Ĵµ(0,0)Ĵµ(t,0)

}
, (5.34)

where the trace is over all energy eigenstates and σ̂ is the statistical operator of the anisotropic
system. Using the cyclicity of the trace, C12 is expressed as

C12(t,0) =
1
Z

Tr
{
Ĵµ(t,0)σ̂Ĵµ(0,0)

}
. (5.35)

The difference between both contributions is that in C12 the density matrix acts on the Hilbert space
of the plasma with the quark pair present. For 2βM � 1, where the quarkonium threshold ' 2M
is much higher than the average particle momentum β−1 in the thermal plane, the contribution
of the correlator C12 will be substantially suppressed. This justifies the following approximation
which is also employed in the equilibrium case [37]:

ρ(ω) ≈
∫
dt e−iωtC21(t,0). (5.36)

The Wightman propagator C21(t, r) for a static quark pair is obtained at large positive times as
a solution of the Schrödinger equation (5.4). Similarly, using iCij(−t, r) = [iCij ]∗(t, r), the static
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potential in the infinite past is

V ′(r) = lim
t→−∞

i∂tC22(t, r)
C22(t, r)

= −g2CF

∫
d3k

(2π)3
(1− cosk · r)G̃00

22 = V ∗(r) . (5.37)

The spectral function can thus be computed from the relation

ρ(ω) = 2
∫ ∞

0
dt {cos (ωt)Re(iC21)− sin (ωt)Im(iC21)} . (5.38)

The numerical solution of the Schrödinger equation for the Wightman correlator C21 is non-trivial.
The task consists in the interesting problem to solve a parabolic complex differential equation
in three dimensions with a potential consisting of a parametrically large spherically symmetric
real part and a small cylindrically symmetric imaginary part. Due to the positive parity and the
symmetry of the potential with respect to the anisotropy axis, the correlator may be expanded in
a subset of spherical harmonics,

C21(t, r) = cl(t, r)Y0
2l(θr) ,

V (r) = V (re)(r) + iV (im)
l (r)Y0

2l(θr) , (5.39)

with V (re)(r) and V
(im)
l (r) denoting the real and imaginary parts of the potential respectively.

With the rescaling

cl(t, r) =
ul(t, r)
r

e−i2Mt, (5.40)

the one-dimensional Schrödinger equations for the components of the spherical expansion take a
numerically tractable form,

i∂tul = − 1
M

(
d2

dr2
− 2l(2l + 1)

r2

)
ul + V (re)ul + iPlmnV (im)

m un . (5.41)

The tensor Plmn is defined by a unit sphere integration over a product of three spherical harmonics
which can be evaluated exactly via Wigner-3j symbols [59]:

Plmn =
∫

dΩY0
2lY

0
2mY0

2n =

√
(4l + 1)(4m+ 1)(4n+ 1)

4π

(
2l 2m 2n
0 0 0

)2

. (5.42)

Without the coupling between different spherical components, a relation of the following type needs
to be evaluated for every timestep dt,

ũl(t+ dt) = e−iĤldtul(t), (5.43)

where the differential operator Ĥl is given by

Ĥl = − 1
M

(
d2

dr2
− 2l(2l + 1)

r2

)
+ V (re)(r) + iPlmlV (im)

m (r) . (5.44)

To ensure a stable time evolution we employ the Crank-Nicolson scheme [60] by introducing the
second order approximation

(
1 +

1
2

iĤdt
)
ũl(t+ dt) =

(
1− 1

2
iĤdt

)
ul(t) , (5.45)
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which is solved as a tridiagonal matrix equation for the discretized system. The full problem
is solved without sacrificing the stability of the algorithm by treating the parametrically small
coupling between the various spherical components as a linear perturbation,

ul(t+ dt) = ũl(t+ dt) + dt
∑

m,n 6=l
PlmnV (im)

m un(t) . (5.46)

The system is discretized on a finite lattice with spacing a and lattice sites [1, . . . , NL], choosing
the boundary conditions

ul(0) = 0 and ul(NL + 1) = 0 (5.47)

for all spherical components with l limited to the range l ∈ [0, . . . , lmax]. The initial condition
(5.32) is discretized as follows [37],

u0(0, r) = −6N
r

4π
δ(r)→ −6N

(
2
πa

)2 n(−1)n+1

4n2 − 1
,

with r = na being the discretized radial coordinate. All other spherical components ul 6=0(0, r)
are set to zero. The scale for the numerical determination of the bottomonium spectral function
for N = 3 shown in Fig. 5.5 is set by the QCD scale ΛMS ' 300MeV in the MS scheme. The
bottom quark mass M = 14.15ΛMS is chosen in agreement with [37]. Introducing a spherical cutoff
lmax = 10 the system of coupled one dimensional Schrödinger equations is solved on three different
grids NL ∈ {2000, 4000, 8000} with a fixed physical size of aNL = 400/ΛMS . A time-step of
dt = 0.02a is chosen and in all three cases the system is evolved for a fixed time t = 265/ΛMS . The
spectral function depends linearly on the lattice spacing a since the coupling between the different
spherical components of (5.41) is introduced as a linear perturbation. To take into account a2-
corrections, the spectral function is extrapolated to the continuum by fitting the a-dependence of
the spectral function at a given frequency against a quadratic polynomial. The melting of the
quarkonium resonance due to Landau damping effects is in qualitative agreement with the decay
of the resonance in thermal equilibrium obtained using the same approach [37].

5.7 Summary of Physical Findings

The effects of an anisotropic momentum distribution on the real-time static potential of a quark pair
in a plasma has been reconsidered using a normalized distribution function. At small anisotropies,
previously observed effects of the distortion were shown to be mostly due to the missing normaliza-
tion factor. In order to probe for a larger effect the limit of maximal anisotropy was investigated.
The calculation of the quarkonium spectral function indicates a melting of the quarkonium reso-
nance similar to the one for an isotropic medium due to a screening of the Coulomb potential and
a dissociation of bound states by Landau damping effects in the thermal plane. Strongly coupled
interactions over large distances are suppressed due to the generation of nearly isotropic screen-
ing masses comparable in magnitude to their equilibrium counterparts. For small angles with the
anisotropy axis, the gluon propagator has additional poles along the imaginary ω-axis indicating
the existence of unstable field modes. The growth rate γ = Im(ω) of unstable modes is observed
to increase and to peak at higher momenta towards the symmetry axis.

The overall physical picture that emerges from a weak-coupling analysis of this system indicates
that the strongly anisotropic state of matter created in the initial stages of heavy-ion collisions is
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Figure 5.5: Left: The melting of the bottomonium spectral function in a maximally anisotropic quark
gluon plasma at a fixed coupling of g2 = 3 (αs ≈ 0.25). Right: The polynomial extrapolation of the spectral
function using three different grid spacings.

characterized by an early deconfinement of colour charges and a rapid diffusive transport of these
charges in the collision plane. The most striking result is that observables related to quarkonium
are very similar to their counterparts in an isotropic medium, making it difficult to distinguish a
highly anisotropic plasma from its isotropic counterpart on the basis of heavy quark observables.
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6 Lattice Gauge Theory

Anyone who attempts to generate random numbers by
deterministic means is, of course, living in a state of sin.

John von Neumann

The only viable technique for an ab-initio calculation of thermal correlation functions in quantum
field theory available today consists in a Monte Carlo evaluation of the euclidean path integral
discretized on a hypercubic lattice. This approach is by construction limited to static quantities
in thermal equilibrium at vanishing chemical potential and difficult to extend beyond this realm
of applicability. In the following this common technique is briefly reviewed for thermal Yang-Mills
theory, and the lattice notation used throughout this thesis is introduced. The last part of this
chapter discusses the free energy of a static quark pair in Yang-Mills theory as well as in the
Green-Karsch effective theory as a simple model for Yang-Mills theory on coarse lattices.

6.1 Yang-Mills Theory on the Lattice

To discretize a gauge theory it is necessary to keep in mind that the mathematical function of gauge
fields is to realize the parallel transport between different points in space-time and thus to allow
for a construction of gauge independent quantities. A natural way to discretize gauge fields on a
hypercubic space-time lattice is thus to introduce an SU(N) variable in some representation r for
every link connecting adjacent lattice sites to represent the Wilson line connecting the corresponding
space-time points along a straight path. Gauge fields are thus represented by a set of links {Uµ(x)}
defined as

Uµ(x) = Wx→x+µ̂ = eigaÃµ(x) (6.1)

at every point x of the lattice and in every direction µ of the Euclidean space-time. The distance a
between neighboring lattice points, which is assumed to be equal in every space-time direction, is
called the lattice spacing. Ãµ(x) = Ãaµ(x)T a is the effective gauge field along a straight line between
neighboring lattice points x and x + µ̂ = x + aeµ [eµ is the unit vector in the direction µ]. The
SU(N) generators T a are normalized according to the convention

Tr T aT b =
1
2
δab (6.2)

in a lattice context. To allow for the introduction of quark like color charges a fundamental
representation r = 1 is chosen throughout this thesis with the generators of SU(2) and SU(3) given
by the Pauli and Gell-Mann matrices (see the appendix) multiplied by a factor of 1/

√
2 to take

into account the normalization (6.2). Gauge transformations S(x) are defined at lattice sites with
links transforming at both end points according to the usual relation for parallel transporters:

Uµ(x)→ S+(x+ µ̂)Uµ(x)S(x). (6.3)

In numerical simulations the extent of the lattice is limited by imposing periodic boundary condi-
tions Uν(x) = Uν(x+Nµµ̂) in every direction µ and thus compactifying the lattice to a hyper-torus
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Figure 6.1: Illustration of a 2-dimensional lattice compactified to a torus by periodic boundary conditions.
The plaquette U12(x) is shown in blue while the single link U1(x), which forms a part of the plaquette, is
shown in red.

(see figure 6.1 for an illustration). By performing a Fourier series expansion of the effective gauge
fields Ãaµ the space-time lattice is related to a lattice in momentum space with lattice spacing
ãµ = 2π/aNµ in the direction µ and extent 2π/a. In the limit of infinite lattice extent aNµ → ∞
in all directions µ the lattice model corresponds to a gauge theory with continuous momenta con-
strained to a Brillouin zone with momentum cutoff ΛBZ = |k|max = π/a. The expectation value
of a function f(U) of the links is defined by the lattice representation of the path integral (2.26)

〈f〉 =
1
Z

∫
[DU ] f(U) e−S , Z =

∫
[DU ] e−S (6.4)

where S is the action of the lattice model and the integration is performed over every link using
the gauge invariant Haar measure [61]. The action S of the lattice model is constrained by the
demands that it must reduce to the Euclidean Yang-Mills action in the continuum limit a→ 0 and
should respect the gauge symmetry of Yang-Mills theory, i.e. be invariant under the transformation
(6.3). So called plaquette actions rely on the gauge invariant Wilson loops around plaquettes of
the lattice

Uµν(x) = Uµ(x)Uν(x+ µ̂)U+
µ (x+ ν̂)U+

ν (x) (6.5)

as construction elements to satisfy these demands. The most simple action belonging to this family
is the Wilson action

SW = βL
∑

x

{
1− 1

N
ReTr

∑

µ<ν

Uµν(x)

}
, where βL =

2N
ag2

. (6.6)

The constant βL is called the lattice coupling. By parametrizing links with the effective fields Ãµ it
is straightforward to show that SW reduces to the Yang-Mills action in the limit a→ 0. Deviations
from the continuum theory appear at O(a2) in a systematic expansion of the action in the lattice
spacing a and are called discretization errors while errors introduced by a compactification of the
lattice are called volume effects.
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6.2 Markov Chains and Importance Sampling

To introduce the necessary techniques for a numerical evaluation of the path integral (6.4) a general
statistical system is considered in this section which is characterized by a finite set of quantities
{σi}, i ∈ [1, . . . ,m]. Let Ω be the state space of the system and f : Ω → R be some function of
these variables. The expectation value of the function f is then defined as

〈f〉 =
∏

i

∫
dσi f(ϕ) w(ϕ) (6.7)

where ϕ = {σi} ∈ Ω. The positve definite function w : Ω → R is called the statistical weight.
Numerical algorithms for a practical evaluation of this integral rely on the construction of a suitable
Markov chain of state space configurations. Formally let {Φi}, i ∈ [0, . . . , n + 1] be a sequence of
states ϕi generated from a finite1 state space Ω by a stochastic process. If the conditional probability
P obeys

P (Φn+1 = ϕn+1|Φn = ϕn, . . . ,Φ1 = ϕ1) = P (Φn+1 = ϕn+1|Φn = ϕn) (6.8)

and the transition probability ϕn → ϕn+1 is thus independent of previous states the sequence
is called a Markov chain. If, in addition, the conditional probability P (Φn+1 = ψ|Φn = ϕ) is
independent of n for all ϕ,ψ ∈ Ω the Markov chain is said to be a homogenous. A Markov chain
where any state is accessible from any other state in some finite sequence of steps

∃ n ≥ 1 : P (Φi+n = ψ|Φi = ϕ) > 0 ∀ (ϕ,ψ, i) (6.9)

is said to be irreducible. Finally a Markov chain is said to be positive recurrent if the largest possible
number of steps after which the Markov chain will return to an initial state ϕ is finite for all states
ϕ ∈ Ω. It is possible to show that a homogenous and irreducible Markov chain will approach a
unique stationary probability distribution of states π(ϕ) after a large number of steps from any
initial state, if and only if it is positive recurrent. This property leads to a statement known as the
ergodic theorem:

The ergodic theorem

Let Φn, n > 0 be an irreducible, homogenous and positive recurrent Markov
chain with stationary distribution π and let f : Ω→ R such that

∑

ϕ∈Ω

|f(ϕ)|π(ϕ) <∞ (6.10)

then for any initial state,

lim
N→∞

N∑

i=1

f(Φi) =
∑

ϕ∈Ω

f(ϕ)π(ϕ). (6.11)

1Note that the state space for a lattice system implemented on a computer is always finite since the lattice has a
finite volume and numbers are represented as binary sequences of limited extent.
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This theorem lies at the heart of modern lattice techniques since it states that it is possible to obtain
the solution to the path integral (6.4) as an average over the sequence of configurations of a Markov
chain with stationary solution π = e−βS/Z. A particularly useful approach to construct this chain
in practice is to demand a detailed balance condition to hold for the probability distribution π

P (ψ ← ϕ)π(ϕ) = P (ϕ← ψ)π(ψ) (6.12)

where P (ψ ← ϕ) = P (Φn+1 = ψ|Φn = ϕ). The condition states that the overall probability for
the transitions ϕ → ψ and ψ → ϕ between arbitrary states ϕ,ψ ∈ Ω is identical in every step
of the Markov chain. A probability distribution π satisfying this property is evidently stationary.
The principle of detailed balance will be used as a guiding concept for the construction of lattice
algorithms throughout this thesis.
The most simple method to implement this concept is the Metropolis algorithm. A single iteration
of the algorithm consists of proposing a random change of the field configuration ϕ → ψ with
probability PC(ψ ← ϕ) > 0 ∀ϕ,ψ ∈ Ω and accepting the suggested change with probability

PA(ψ ← ϕ) = min
(

1,
PC(ϕ← ψ)w(ψ)
PC(ψ ← ϕ)w(ϕ)

)
. (6.13)

This so called accept/ reject step can be conveniently implemented by generating a random number
λ ∈ R, drawn with uniform probability from the interval [0 . . . 1], and accepting the suggested
change whenever λ is smaller than the probability ratio (6.13). For practical purposes it is usually
necessary to partition the set of variables {σi} into subsets which may consist of individual variables
for instance and perform a subsequent Metropolis update of all subsets. A critical issue in the
design of any Metropolis algorithm is the choice of a suitable proposition step to ensure a sufficient
acceptance rate which is typically required to exceed 50%.
Another efficient technique consists in iterating through the individual variables σi of the system
and performing a random change σi → σ′i of these variables with transition probability

Pi(σ′i ← σi) = w(σ′i, {σj 6=i}) > 0. (6.14)

The algorithm therefore subsequently generates the correct statistical distribution for each variable.
It is important to note that this is not identical to generating the correct distribution for the overall
system if different variables of the system are coupled. It is however straightforward to show that
the overall transition probability

P ({σ′i} ← {σi}) =
∏

i

Pi(σ′i ← σi) (6.15)

after one iteration of the algorithm, which consists in a sweep of all variables of the system,
satisfies detailed balance (6.12). Since the statistical weight is given by a Boltzmann factor
w(ϕ) = e−βH(φ)/Z in many physical problems and individual variables are drawn from a ther-
mal distribution the approach is called heatbath algorithm.
It is a common feature of all Monte-Carlo algorithms that, starting from an arbitrary initial con-
figuration ϕ0 ∈ Ω, the desired probability distribution π(ϕ) = w(ϕ) is only approached to a desired
precision after some finite number s of steps. This equilibration time is often called “burn in”
and accounted for in practice by omitting all states {ϕi}, i < s of the chain in the calculation of
expectation values.
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6.3 Algorithms for Lattice Yang-Mills Theory

For lattice Yang-Mills theory with a Wilson action (6.6) efficient algorithms have been developed
for the numerical evaluation of the discretized path integral (6.4). These methods shall be briefly
reviewed in the following to lay the ground for algorithms introduced in the coming chapters. For
details the reader is referred to [61].
The starting point for the Cabbibo-Marinari pseudo-heatbath algorithm is to decompose the group
SU(N) into a set of SU(2) subgroups SU(2)k, k ∈ {1, . . . ,m} which cover the whole group and
leave only the unit element invariant. To perform a heatbath update of the individual link Uµ(x) ∈
SU(N) the new link

U ′µ(x) = am . . . a1Uµ(x) (6.16)

is chosen by subsequently drawing the transformation elements ak ∈ SU(2)k from the distribution

dP (ak) = d(k)ak
e−SW (akU

k−1
µ (x),Û)

Zk(Uk−1
µ (x))

where Zk(U) =
∫
d(k)a e−SW (aU,Û) (6.17)

which is the differential statistical weight after updating the subgroup SU(2)k−1 for the link x →
x+ µ̂. Û denotes the set of all remaining links. The Haar measure for SU(2)k is indicated by the
operator d(k) while the link Ukµ(x) is defined via:

Ukµ(x) = akU
k−1
µ (x) and U0

µ(x) = Uµ(x). (6.18)

It is convenient to choose a block diagonal form for the subgroups SU(2)k

ak =




1
. . .

αk
. . .

1




(6.19)

with αk ∈ SU(2) being in the fundamental representation. The distribution function (6.17) is
rewritten by isolating the part of the action SW which depends on the subgroup SU(2)k at x→ x+µ̂

SW (Ukµ(x), Û) = −βL
N
ReTr(akUk−1

µ (x)Sµ(x)) + . . . = − β
N
ReTr(αkρk) + . . . (6.20)

where the sum of staples along x→ x+ µ̂ is defined as (see figure 6.2):

Sµ(x) =
∑

|ν|6=µ
Uν(x+ µ̂)U+

µ (x+ ν̂)U+
ν (x). (6.21)

ρk is defined by decomposing Uk−1
µ (x)Sµ(x) into SU(2) subgroups, using the fact that the sum

of two arbitrary SU(2) matrices in the fundamental representation will always be proportional to
another SU(2) matrix. The proportionality factor is |ρk| =

√
det(ρk). The distribution function

for the matrix αk can thus be written in the following form:

dP (αk) ∼ dαk exp
β

N
Trαkρk. (6.22)
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Figure 6.2: Illustration of staples (Wilson lines highlighted in blue) belonging to the link x → x + 1̂ (red)
on a 3-dimensional lattice. The matrix S1(x) is defined as the sum of all staples along this link.

To take advantage of the gauge invariance of the Haar measure the matrix transformation αk →
α = αk(|ρk|ρ−1

k ) is introduced choosing the parametrization

α = α01 + i
∑

i

αiσi where
4∑

j=0

α2
j = 1 (6.23)

and σi, i ∈ [1, 2, 3] are the Pauli matrices. The distribution function is thus given by [β′L = 2βL/N ]:

dP (ak) ∼ dα0

√
1− α2

0 exp
(
β′Lα0|ρk|

)
dΩ ∼ dy

[
1−

(
log y
β′L|ρk|

)2
] 1

2

dΩ. (6.24)

The variable y introduced in the second step is defined as y = exp (β′Lα0|ρk|). dΩ is the angular
integration measure for the vector α = (α1, α2, α3). To generate this distribution y is drawn from
the interval [e−β

′
L|ρk|, eβ

′
L|ρk|] with uniform probability and accepted according to its statistical

weight with probability PA(y) = [. . .]1/2. The direction of α is chosen randomly. The new link
Ukµ(x) = akU

k−1
µ (x) is finally obtained via αk = αρk/|ρk|. A single update of all subgroups and all

links with this method is called a heatbath trial.
Since subsequent configurations {U}i ∈ Ω, i ∈ {1, . . . n} of the generated Markov chain will not be
fully decorrelated the number of actually independent measurements of a function f : Ω → R of
the links is expressed as n/2τf where τf is called the (integrated) auto-correlation time of f :

τf =
1
2

∞∑

t=−∞

f({U}i)f({U}i+t)
f({U}i+t)2

(6.25)

The autocorrelation time of any observable can be significantly reduced by the use of overrelax-
ation techniques. It is clear that the transformation U ′µ(x) = UTU

+
µ (x)UT where UT ∈ SU(N)

satisfies detailed balance if the action SW remains unchanged since Uµ(x) = UTU
′+
µ (x)UT and thus

P (U ′ ← U) = P (U ← U ′). By choosing U ′µ(x) as far away as possible from the original link and
alternating between heatbath trials and overrelaxation steps a fast decorrelation of field configu-
rations is achieved. When updating block diagonal SU(2) subgroups, it is natural to choose the
fundamental transformation matrix

UTk = |ρk|ρ−1
k (6.26)

to “mirror” the respective subgroup at the minimum of the action.
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6.4 Green- Karsch Effective Theory

Before turning to lattice Yang-Mills theory at finite temperature, it is instructive to consider a
simple mean-field model [62] for the SU(2) theory obtained using strong coupling techniques. For
a more detailed review see [63]. As a starting point the Wilson action is decomposed into the
contribution of individual plaquettes P (U):

SW (U) =
∑

P

SP (U) where SP (U) =
4
g2

(
1− 1

2
ReTrP (U)

)
. (6.27)

Using harmonic analysis on group manifolds [61] the exponential e−SP : SU(2)→ R is rewritten as
a series of the group characters χr(P ) of the plaquette P ∈ SU(2) in all representations r of the
group:

e−SP = Z0

(
1
g2

){
1 +

∑

r

drzr

(
1
g2

)
χr(P )

}
(6.28)

dr = r + 1 is the dimension of the representation while zr(1/g2) = Ir+1(4/g2)/I1(4/g2) and Z0 =
g2I1(4/g2)/2. The modified Bessel functions are denoted as Ir. Note that the lattice spacing has
been absorbed into the coupling ag2 → g2. An effective theory is constructed by making the
following approximations:

1. No Magnetic Interactions
Magnetic interactions are neglected by discarding the contribution of space-like plaquettes.
The motivation is that any deconfinement phase transition in the purely electric effective
theory will translate into a phase transition in the full theory since space-like plaquettes tend
to reduce the string tension.

2. Strong Coupling
A strong coupling βL = 4/g2 � 1 is assumed which, clearly, is motivated by the use of
strong coupling techniques. Despite being contradictory to the aim of studying the transition
into a weak coupling regime the model successfully captures some essential aspects of the
deconfinement transition in the full theory

The partition function of the effective theory thus takes the form [temporal plaquettes are denoted
as Pτ ]:

ZGK =
∫

[DU ]
∏

Pτ

{
1 +

∑

r

drzr

(
1
g2

)
χr(Pτ )

}
. (6.29)

By integrating out spatial links the effective action can be expressed by characters of Polyakov
loops

Wx,0→β =
Nτ∏

τ=1

Uτ (x, τ), (6.30)

where x is the spatial component of the lattice coordinate and temporal links are denoted as Uτ .
The partition function takes the dimensionally reduced form

ZGK =
∫ ∏

x

dWx,0→β
∏

x,i

{
1 +

∑

r

zNτr

(
1
g2

)
χr(Wx,0→β)χr(Wx+î,0→β)

}
(6.31)
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Figure 6.3: Polyakov loop interactions in the Green-Karsch effective theory at leading order in the inverse
coupling are shown on the left for a 2d-lattice. An even-odd partitioning of the lattice facilitates the numerical
evaluation of the model.

where neighboring Polyakov loops are coupled via their characters in all representations r. At
strong coupling βL � 1 higher representations are suppressed due to the prefactor zr and only
the contribution of the fundamental representation r = 1 is retained. By choosing the following
parametrization for the fundamental representation

W = e
i
2
φn·τ =

(
cos

φ

2

)
1 + i

(
sin

φ

2
n · τ

)
, dW =

1
4π2

dφdΩ(n)
(

sin
φ

2

)2

(6.32)

where n is an arbitrary unit vector and noting that the fundamental character is given by

Lx = χ1(Wx,0→β) = 2
(

cos
φ

2

)
(6.33)

the partiton function of the Green-Karsch effective theory for SU(2) is brought into an exceedingly
simple form reminiscent of the partition function for a lattice of continuous Ising spins

ZGK =
∏

x

∫
dLx

√
1− L2

x expβ′
∑

i

LxLx+i. (6.34)

where β′ = 4zNτ1 ' 4(β/4)Nτ . It is straightforward to implement this model numerically using
the Metropolis algorithm. The update of a single site x consists in drawing the new character L′x
from a uniform probability distribution defined on the interval [−1, 1] and accepting the suggested
change with probability:

PA(L′x ← Lx) = min
(

1,
w(L′x)
w(Lx)

)
= min

(
1,

√
1− (L′x)2

1− (Lx)2
exp

{
β′(L′x − Lx)

∑

±i
Lx+i

})
. (6.35)

An iteration of the algorithm consists in performing a successive update of the characters at all
lattice sites. A parallel implementation of this algorithm is realized by alternating between even
and odd lattice sites. As illustrated in figure 6.3, different elements belonging to the same set of
lattice sites are decoupled in the action making it possible to perform a parallel update of all sites
belonging to the same set. Both actions were simulated on 3-dimensional lattices with volumes
V/a3 = 203, 403 and 1003. Up to 100 000 iterations of the Metropolis algorithm were performed
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Figure 6.4: Polyakov loop susceptibility in dependence of the lattice coupling β′ (left) and free energy in
dependence of the distance d for various couplings (right) in the Green-Karsch effective theory on a lattice
with volume V/a3 = 403.

on each lattice for different choices of β′. A measurement was performed every 20 iterations of the
algorithm. The first 200 measurements were omitted to reduce errors introduced by the burn-in
of the Monte-Carlo. The results for this simple model are briefly summarized in the following to
prepare the ground for a measurement of free energies in full Yang-Mills theory.

• The Polyakov Loop Susceptibility χP is defined as [〈. . .〉M indicates an averaging over the
Markov chain and 〈. . .〉V an averaging over the lattice volume]:

χP = 〈〈L2
x〉V − 〈Lx〉2V 〉M (6.36)

As discussed in the first chapter the expectation value of the Polyakov loop 〈Lx〉V is expected
to become finite beyond the critical temperature due to the spontaneous breaking of the Z(2)
symmetry in the full theory. These expectations are confirmed with the susceptibility χP
showing a peak at the critical coupling β′c ' 0.765. This corresponds to a critical coupling
βLc = 1.75 on a coarse Nτ = 2 lattice which is close to the observed value of βLc = 1.875 [63]
in full Yang-Mills theory.

• The (average) free energy F (r) is defined as the logarithm of the Polyakov loop correlator

β′F (r) = ln〈LxLx+r〉 (6.37)

where r is the distance between both loops (see the next section). As expected in full Yang-
Mills theory the free energy rises linearly with the distance r in the confined phase. Above
β′c the free energy takes the form of a Debye screened potential. (4.2).

These initial observations confirm an analogous behavior of the Polyakov loop in the Green-Karsch
effective theory and full Yang-Mills theory. For a more detailed analysis see [64]. The statistical
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error of primary quantities like χP , which are obtained by averaging over the elements of a Markov
chain, can be estimated by calculating the standard deviation and taking into account the respective
autocorrelation time. The error of secondary quantities like F3, defined as functions of primary
quantities, is obtained using Jacknife analysis. Let g : Ω → R be a primary quantity and f(g) :
Ω → R be a function of g. The statistical variance σ2

f(g) of f is then defined by the relation [gi is
the measurement i of g]:

σ2
f(g) =

m− 1
m

m∑

i=1

(f(〈g〉i)− f(〈g〉))2 where 〈g〉i =
b∑

j=1

g(i−1)b+j . (6.38)

n = mb is the number of measurements and b ∈ N is called the bin size. The errors for the
previously discussed results are negligable.

6.5 Free Energy in Lattice Yang-Mills Theory

The aim of the measurement presented in this section is to determine the thermodynamic free
energy of a static charge pair consisting of a fundamental color charge q and an anti-fundamental
charge q̄ located at the set of positions {x,y} ∈ R3. The measurement is part of an ongoing
project to determine the electric screening mass mD. It is included in this thesis to supplement the
perturbative picture of heavy quark bound states developed in previous chapters with a numerical
study of the corresponding thermodynamic free energy. Note that this quantity is not identical to
the binding energy defined in chapter 4 as has been pointed on various occasions. The partition
function of thermal Yang-Mills theory in the presence of the static qq̄-pair takes the following form
(for full QCD see McLerran,Svetitsky [65]):

Zqq̄
Z

=
1
Z

∫
[DA]e−SYMW+

0→β,xW0→β,y where Z =
∫

[DA] e−SYM . (6.39)

SYM is the action of Yang-Mills theory formulated on a euclidean space with a compactified tem-
poral dimension of extent β = 1/T . W0→β,x is a Polyakov loop at the position x ∈ R3. The trace
of the Polyakov loop is denoted as

Lx =
1
N

Tr W0→β,x (6.40)

continuing the notation introduced in chapter 2. Following Brown, Weisberger [66] and Nadkarni
[67] the partition function is often decomposed into color channels

Zqq̄ = ZSqq̄P
C
S + ZAqq̄P

C
A (6.41)

where the projectors PCX on singlet (S) and adjoint (A) components are defined as:

PCS =
1
N2

1× 1− 2
N
T a × T a, PCA =

N2 − 1
N2

1× 1 +
2
N
T a × T a, T a = T a∗ (6.42)

Both components of the partition function are obtained by projection on the respective charge
sector

ZXqq̄
Z

=
1
Z

Tr PCXZ
X
qq̄

Tr PCX
(6.43)
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which yields the following representations:

ZSqq̄
Z

=
1
N

Tr〈W+
0→β,xW0→β,y〉

ZAqq̄
Z

=
1

N2 − 1
〈L+
xLy〉 −

1
N(N2 − 1)

Tr〈W+
0→β,xW0→β,y〉. (6.44)

The contribution of the Polyakov loop correlator is referred to as the average component (AV):

ZAVqq̄
Z

=
1
N2
〈LrL+

0 〉. (6.45)

Contrary to the expectation that this decomposition yields the partition functions for singlet and
adjoint states, it was shown by Philipsen and Jahn [68] that both components receive only contri-
butions from the singlet state. To illustrate this in a lattice formalism the transfer matrix in the
presence of a static qq̄ pair is introduced

T̂ = T̂0P̂
S,A, T̂0 = e−aĤ0 , (6.46)

where T̂0 is the transfer matrix [69, 70] for lattice Yang-Mills theory in a temporal gauge and Ĥ0

the Kogut-Susskind Hamiltonian [71]. The projection operators P̂S,A, used here, annihilate Hilbert
space states not transforming in the singlet or adjoint representation under a gauge transformation
acting on the charge positions {x,y} ∈ Zd. Both projection operators are listed in the following

P̂Sαβµν =
∫

[Dg]g+
αβ(x)gµν(y)R̂(g), (6.47)

P̂Aαβµνab =
∫

[Dg]g+
αβ(x)gµν(y)DA

ab(g(x0))R̂(g), (6.48)

where g ∈ Zd+1 × SU(N) is a gauge transformation imposed by the operator R̂(g) and x0 ∈ Zd is
referred to as location of the adjoint state. The representation matrices of the adjoint representation
are

DA
ab(g) = 2Tr(g+T agT b). (6.49)

Using these projectors the average component of the partition function can now be written as [72]

1
N2
〈L+
xLy〉 =

1
N2Z

∑

αβ

Tr
{
T̂Nτ0 P̂Sααββ

}
(6.50)

where Nτ is the temporal lattice extent. Let ψαβ(U) be a superposition of field eigenstates which
is referred to as the wavefunction. The Hilbert space projector on singlet eigenstates annihilates
all wavefunctions not transforming as ψβµ(Ug) = g(x)βγψγδ(U)g+

δµ(y) where Ug is the transformed
field eigenstate. Using the fact that the Kogut Susskind Hamiltonian commutes with the projector
the average component of the partition function can be rewritten as a trace over singlet energy
eigenstates

1
N2
〈L+
xLy〉 =

1
N4

∑

nαβ

|〈nαβ|nβα〉|2e−En/T =
1
N2

∑

n

e−En/T . (6.51)
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 N= 4
 N= 6
 N= 8
 N=10

Nτ T/Tc = 1.5 T/Tc = 1.75 T/Tc = 2.0 T/Tc = 2.25 T/Tc = 2.5 T/Tc = 2.75 T/Tc = 3.0
4 5.877 5.960 6.038 6.111 6.181 6.246 6.307
6 6.127 6.231 6.325 6.410 6.486 6.554 6.614
8 6.328 6.439 6.535 6.616 6.687 6.747 6.800
10 6.490 6.598 6.688 6.762 6.825 6.879 6.925

Figure 6.5: Top left: The temperature dependence of the singlet free energy for Nτ = 10. The screening
mass, obtained by fitting the free energy against an exponential, depends linearly on the temperature. Top
right: The Nτ dependence of the result is shown for T = 2.25Tc. The free energy vanishes increasingly
for finite r due to the diverging self energy of Wilson lines. Bottom: The temperature dependent lattice
couplings as obtained from the non-perturbative β− function (6.53).

The correlator of traced Polyakov loops, thus, does not parametrize contributions of adjoint states
to the partition function. Note also that the correlator defining the ’singlet’ component of the
partition function is not gauge invariant. A gauge invariant representation for the singlet component
is obtained by connecting the Polyakov loops with the Wilson line W0,x→y to arrive at a periodic
Wilson loop [68]:

Tr〈W+
0→β,xW0→β,y〉 → Tr〈W+

0→β,xW0,x→yW0→β,yW
+
0,x→y〉. (6.52)

To measure the correlators, associated with the would be singlet and average components of the
partition function, on the lattice a suitable scheme is required which relates the physical temperature
in the continuum to the lattice coupling βL of the discretized system. The scheme used in the

Nτ 4 6 8 10
βLc 5.690(5) 5.89(1) 6.055(6) 6.201(5)

Table 6.1: Critical coupling for N=3 lattice Yang-Mills theory with Wilson action in 3+1 dimensions [73].

following relies on the following relation obtained in [73] using non-perturbative renormalization
techniques

log
T

Tc
= 1.7139(βL − βLc)− 0.8155(β2

L − β
2
Lc) + 0.6667(β3

L − β
3
Lc) (6.53)
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Figure 6.6: Left: At first sight the screening masses, obtained on Nτ = 10 lattices by fitting the free
energy against an exponential decay, show the desired linear temperature dependence. Right: A continuum
extrapolation of the free energy has been attempted by fitting the r-dependence of the free energy at a given
temperature with splines for each Nτ . The results indicate that the free energy vanishes in the continuum
limit due to a diverging screening mass.

where β = β − 6. This β-function was obtained on lattices with a temporal extent of Nτ ∈
{4, 6, 8, 10} and three spatial dimensions of extent Ni = 3Nτ , i ∈ {1, 2, 3} in the physical tempera-
ture range 0.5Tc < T < 3Tc. This layout has also been used in the measurements presented in the
following. The critical lattice couplings entering the β-function are listed in table 6.1 and where
obtained by measuring the triplet loop susceptibility [73]. To measure the so called singlet and
average free energies

FS(r) = lnTr〈W+
0→β,xW0→β,y〉, FAV (r) = ln〈L+

xLy〉, (6.54)

where r = |x − y|, the physical temperature is varied from T = 1.5Tc to T = 3.0Tc in steps of
∆T = 0.25Tc on lattices with temporal extent Nτ ∈ {4, 6, 8, 10}. The β-function (6.53) has been
solved for βL to obtain the corresponding lattice couplings listed in figure 6.5. 15000 iterations
of the previously described Cabbibo-Marinari heatbath algorithm were performed for each lattice
configuration with a measurement taken every 10 configurations. The first 1000 configurations
were omitted. Since the average component of the free energy has been extensively analyzed, the
following discussion will focus on the singlet free energy as obtained by taking the logarithm of
the expectation value of the periodic Wilson loop. The free energy is normalized by demanding
F (r → ∞) = 0. The Debye screened potential (4.2) does not provide an acceptable fit to lattice
data for the periodic Wilson loop. Instead an exponential decay is observed with the screening
mass having the expected linear temperature dependence as shown in figure 6.5. A continuum
extrapolation of the free energy has been attempted by fitting the r-dependence of the free energy
at a given temperature with splines for each Nτ . The singlet free energy, as obtained here from
the periodic Wilson loop, is found to vanish in the continuum limit due to a diverging screening
mass. This behavior is caused by a diverging self energy of the Wilson lines [74] which needs to
be properly renormalized to extract physical screening masses. Suitable schemes are discussed in
[74]. The measurements presented here are part of an ongoing project and serve to supplement
previous discussions of qq̄-states with a non-perturbative point of view and as an illustration of
lattice techniques. The interested reader is referred to [75] for final results.





7 Classical Lattice Model for High Temperature QCD

Simplicity is the ultimate sophistication.

Leonardo da Vinci

This chapter focuses on the construction of a simple lattice model for the dynamics of soft gauge
fields in the Yang-Mills plasma and discusses the matching of this model to the full continuum
theory. Significant advances in the numerical implementation of this model were made in the
course of the research leading to this thesis and will be highlighted in later parts of this chapter.

7.1 Classical Approximation of Quantum Fields

To discuss the classical limit of bosonic quantum field theory a general system with the d-dimensional
partition function

Z = Tre−βĤ({φ̂i,π̂i}) (7.1)

is considered, where the Hamiltonian Ĥ is a function of the set of bosonic field operators {φi(x)}, i ∈
{1, . . . , n} and conjugate momentum operators {πi(x)} in the Heisenberg picture satisfying the
commutation relations:

[φ̂i(x), π̂j(y)] = i~δijδ(x− y). (7.2)

As discussed in chapter 3, the thermal nature of the system manifests itself in the bare real-time
propagators of the fields by the appearance of a symmetric component proportional to the Bose
distribution:

nB(ω) +
1
2

=
T

~ω
+

1
12

~ω
T

+ . . . (7.3)

The reduced Planck constant ~ = 6.582× 10−25GeV s is shown explicitly in the high temperature
Laurent expansion of the Bose distribution. The expansion parameter for the perturbative series
is ~g2. For quantities insensitive to the energy region ω ≥ T the perturbative series can thus be
rearranged into a systematic expansion in ~ with the tree level contribution obtained in the limit
~→ 0 consisting of the sum of all terms proportional to

g2m
m∏

j=1

(
T

ωj

)
, m ∈ N (Classical Contributions). (7.4)

The classical theory resums all diagrams with 2m internal vertices and the maximal number of m
insertions of the symmetric propagator. To derive a complete set of equations describing the time
evolution of the system in the classical limit, the Heisenberg picture equations of motion for the
field operators and conjugate momentum operators are evaluated:

d
dt
ϕ̂i(x) =

i
~

[Ĥ, ϕ̂i(x)] and
d
dt
π̂i(x) =

i
~

[Ĥ, π̂i(x)]. (7.5)

The commutators can be evaluated in the classical limit ~ → 0 by expanding the Hamiltonian
in the field and momentum operators and subsequently employing the following convenient set of
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relations

lim
~→0

i
~

[π̂ni (x), ϕ̂j(y)] = nπ̂n−1
i (x)δijδ(x− y) and lim

~→0

i
~

[ϕ̂ni (x), π̂j(y)] = −nϕ̂n−1
i (x)δijδ(x− y),

(7.6)
where ∈ N is the order parameter of the series. The commutators (7.5) in the classical limit are
therefore identical to functional derivatives of the operator function Ĥ({ϕi(x), πi(x)}) with respect
to individual field or momentum operators:

lim
~→0

i
~

[Ĥ, ϕ̂i(x)] =
δĤ

δπ̂i(x)
and lim

~→0

i
~

[Ĥ, π̂i(x)] = − δĤ

δϕ̂i(x)
. (7.7)

The Heisenberg equations are therefore identical to the classical Hamiltonian equations of motion
in an operator form in the limit ~→ 0:

d
dt
ϕ̂i(x) =

δĤ

δπ̂i(x)
and

d
dt
π̂i(x) = − δĤ

δϕ̂i(x)
. (7.8)

To complete the transition to a classical theory a phase space must be introduced. In the limit
~ → 0 the operators ϕ̂, π̂ commute and field eigenstates |ϕ〉 ∈ Hϕ are orthogonal to momentum
eigenstates |π〉 ∈Hπ:

[ϕ̂i(x), π̂j(y)] = 0 and 〈ϕ|π〉 = 0. (7.9)

The Hilbert spaces Hϕ = span{|ϕ〉} and Hπ = span{|π〉} spanned by field and momentum eigen-
states have become distinct. Since the set of operator {ϕ̂i(x), π̂i(x)} forms a complete set of
commuting hermitian operators characterizing the system the Hilbert space of the classical theory
is the Fock space:

Fcl = Hϕ ×Hπ. (7.10)

This space defined at some inital time t = 0 is the space of all initial conditions to the classical
time evolution. By acting on individual states Fcl with the Heisenberg equations (7.8) a classical
phase space trajectory obeying the Hamiltonian equations of motion is obtained. To summarize
the following observations have been made:

• The tree level contribution in a systematic expansion of the quantum theory in ~ is identical
to the classical theory defined by the respective Lagrangian.

• The physics at soft energy scales ω � T is predominantly classical. All Feynman diagrams
with a maximal number of thermal (symmetric) insertions are resummed by the classical
theory.

• A theory where soft and hard scales are cleanly separated is purely classical in the low energy
regime.

The last remark indicates that a classical approximation of Yang-Mills theory must be applied with
caution due to the interdependence of hard and soft momentum scales. A detailed discussion of
the approximation will be given in the following sections.
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7.2 Application to Soft Scales in the Yang-Mills Plasma

As a starting point for the construction of a classical model for Yang-Mills theory at temperatures
T � Tc the characteristic gluon momentum scales are briefly reviewed again in the following:

1. Hard Momentum Scale: k ∼ T
The characteristic momentum scale for gluons in a Yang-Mills plasma corresponds to the
temperature T of the medium. The corresponding length scale 1/T is the average inter
particle spacing.

2. Electric Scale: k ∼ gT
The thermal mass of soft longitudinal gluons is given by the Debye mass mD ∼ gT . The ex-
change of longitudinal gluons is significantly suppressed below this threshold which translates
into a suppression of electrical interactions at distances larger than 1/mD.

3. Magnetic Scale: k ∼ g2T

Magnetic interactions, which are the most far reaching interaction in the Yang-Mills plasma,
thus experience a dynamical screening over distances larger than 1/g2T .

The electric and magnetic scales are collectively referred to as soft scales. By choosing the separation
scale gT < Λcl < T momentum space is partitioned into regions with high and low gluon occupation
numbers. Due to the thermal screening of longitudinal and transverse gluon modes, the physics
remains weakly coupled at low energies. The soft scales in the Yang-Mills plasma can, however,
not be decoupled from the hard momentum scale, since the internal loops of diagrams with soft
external momenta are often dominated by the exchange of hard gluons [18], where the hard scale
serves as a natural cutoff. Many quantities are insensitive to the exact nature of the thermal cutoff
however and can be reproduced in the context of a classical theory with sharp momentum cutoff
Λcl � T . The partition function of d-dimensional classical Yang-Mills theory at finite temperature
has the following form

Zcl =
∫

[DA][DE]δ(DiE
i)e−βHYM , (7.11)

where a temporal gauge has been chosen to introduce a canonical formalism, where gauge fields Ai
are accompanied by conjugate momenta Ei and classical statistical mechanics can be applied in a
straightforward manner. The gauge is imposed by the non-abelian Gauss constraint DiE

i = 0. All
fields are defined at the Minkowskian time t = 0. The Hamiltonian HYM of the theory is given by

HYM =
∫

d3xTr
{
−EiEi +

1
2
FijF

ij

}
, (7.12)

where color electrical fields appear as the conjugate momenta to gauge fields. Time dependent
correlation functions are obtained by evolving ensemble configurations with the Euler-Lagrange
equations of motion:

Ėi = −DjFji and Ȧi = Ei. (7.13)

The model will be extended in the next chapter to take into account leading order interactions with
hard (sparsely populated) modes in a generic non-equilibrium setting. In the remaining part of
this chapter the classical model is discussed choosing a hypercubic momentum cutoff to facilitate a
numerical implementation of the model. Techniques of this type were pioneered by Grigoriev and
Rubakov [76].
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q

Figure 7.1: Illustration of Gauss’s law on the lattice. The difference between the electric flux into a lattice
site (blue) and the electric flux leaving a lattice site (red) is given by the charge q(t) = j0(x, t).

7.3 Formulation on a Hamiltonian Lattice

By restricting momenta to a Brillouin zone ki < Λcl a d-dimensional classical lattice model with
uniform lattice spacing a = π/Λcl in each spatial direction and the following partition function is
obtained:

ZL =
∫

[DU ]
∫

[DE] δ(G) e−βHL . (7.14)

The Hamiltonian HL of the lattice model is chosen to take the form

HL(t) =
∑

x



a

3TrEi(x, t)Ei(x, t) + βL
∑

i<j

{
1− 1

N
Re TrUij(x, t)

}
 , (7.15)

where βL = 2N/ag2. Spatial gauge fields {Ai(x, t)} are discretized as lattice links Ui(x, t) in
the fundamental representation according to (6.1). The magnetic part of the Hamiltonian HL

corresponds to a d-dimensional Wilson action (6.6). Since the time coordinate t remains continuous
the color electric field Ei(x, t) = Eai (x, t)T a ∈ su(N) is discretized as an element of the fundamental
Lie algebra defined at each lattice site from the relation:

U̇i(x, t) = igaEi(x, t)Ui(x, t). (7.16)

It is straightforward to show that this relation reduces to Ei = Ȧi in the continuum limit a → 0.
The generators T a are normalized according to the lattice convention (6.2). The partition function
is defined at the time t = 0 and the integration is performed over all gauge links {Ui(x, 0)} using
the Haar measure and over the adjoint components of all electrical fields {Ei(x, 0)}. A temporal
gauge is enforced by requiring a discretized analogue of Gauss law (2.15) to hold (see figure 7.1)

G(x, t) =
∑

i

{
Ei(x, t)− U−i(x, t)Ei(x− î, t)U+

−i(x, t)
}

= j0(x, t). (7.17)

The color current jµ(x, t) is defined at each lattice site and vanishes in the absence of external
charges. The Gauss constraint on the lattice forces the difference between the (parallel transported)
electric flux flowing towards and away from a lattice site site to equal the charge residing at the
respective site. The lattice setup discussed in this section corresponds to the Hamiltonian lattice
formulation [71].
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7.4 Classical Equations of Motion

The Euler-Lagrange equations of motion for the electrical fields of the classical lattice model [77]
are obtained by varying the action of the lattice model

SL =
∫

dt
∑

x

L (x, t) (7.18)

where L (x, t) is the Lagrangian density

L (x, t) =
a

g2T
TrU̇+

i (x, t)U̇i(x, t)− β3

∑

i<j

{
1− 1

N
ReTrUij(x, t)

}
(7.19)

with respect to the complex components Ui(ab) and U∗i(ab) of link matrices under the unitarity
constraint UiU+

i = 1. By parametrizing the infinitesimal variation of a link matrix in the form

dUi(x, t) = iT adÃai (x, t)Ui(x, t) (7.20)

the following Euler-Lagrange equation is derived as a solution of the variational problem δSL = 0:

Tr

{(
d
dt
∂L

∂U̇i
− ∂L

∂Ui

)T
T aUi −

(
d
dt
∂L

∂U̇∗i
− ∂L

∂U∗i

)
U+
i T

a

}
= 0. (7.21)

Throughout this section the notation (∂f/∂U (∗))ab = ∂f/∂U
(∗)
ab will be used to write the derivative

of a function f : SU(N) → R with respect to the components of a link U ∈ SU(N) in a matrix
form. Using the definition (7.16) of electric fields the following expressions are obtained

(
d
dt
∂L

∂U̇i

)T
= −i

a2

gT

d
dt

(U+
i Ei),

d
dt
∂L

∂U̇∗i
= i

a2

gT

d
dt

(EiUi) (7.22)

which introduce the time derivative of color electric fields into the Euler Lagrange equation. Deriva-
tives of the Lagrangian density with respect to individual links Ui(x, t) reduce to the sum of staples
Si(x, t) (6.21) multipliying this link in the Wilson part of the action:

∂L

∂Ui
=
βL
2N

Si and
∂L

∂U∗i
=
βL
2N

S∗i . (7.23)

Upon inserting the preceding expressions into the Euler-Lagrange equation the following interme-
diate result is obtained

2a2

g

{
Tr(T aĖi) + Re Tr(T aU̇+

i Ei)
}

=
βL
N

∑

|j|6=i
Im Tr(T aUij), (7.24)

where the sum of staples has been closed to a sum over plaquettes Uij by multiplication with the
missing link. From the identity

Re Tr(T aUiU+
i Ei) = gaEbiE

c
i Im Tr(T aT bT c) (7.25)
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Figure 7.2: The equation of motion for the color electric field E1(x) (red) on a 3-dimensional lattice. The
trace is taken over the difference of the sum of all plaquettes including the link U1(x) (blue) circled in
opposite directions.

it is evident that the second component of the bracketed expression vanishes as the contraction of
a symmetric and antisymmetric tensor. The following equation of motion is thus obtained for color
electric fields:

a3gĖai (x, t) = 2
∑

|j|6=i
Im Tr(T aUij(x, t)). (7.26)

For practical purposes it is desirable to scale out the lattice spacing as well as gauge coupling by
introducing the following rescalings

a2gEi → Ei and
t

a
→ t (7.27)

which need to be taken into account in the construction of any observable to be investigated in
the context of this model. To summarize classical Yang-Mills theory on a Hamiltonian lattice is
characterized by the equations of motion

U̇i(x, t) = iEi(x, t)Ui(x, t) (Faraday’s law of induction) (7.28)

Ėai (x, t) = 2
∑

|j|6=i
Im Tr {T aUij(x, t)} (Ampere’s circuital law) (7.29)

under a Gauss constraint which needs to be satisfied by the initial lattice configurations at t = 0:

∑

i

{
Ei(x, t)− U−i(x, t)Ei(x− î, t)U+

−i(x, t)
}

= 0. (7.30)

It is important to note that the Gauss constraint remains satisfied during the time evolution of
the system if fulfilled by the initial field configuration of the lattice system. Upon expanding the
fields in the lattice spacing a it is readily shown that deviations from Gauss law in the continuum
appear at O(a2) in the resulting series. Since the equations of motion are obtained directly from
a variation of the O(a) correct Wilson action any deviations of the lattice model from classical
Yang-Mills theory in the continuum will appear at O(a2) in a systematic expansion in the lattice
spacing.
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7.5 Matching to the Quantum Theory in the Continuum

To match the classical theory to quantum Yang-Mills theory with spatial momenta restricted to
the Brillouin zone ki < Λcl = π

a , gT � Λcl � T , a perturbative scheme briefly outlined in this
section and referred to as Hard Classical Loop (HCL) perturbation theory [78, 79] is used. Spatial
momenta appearing in the denominators of Greens functions are deformed by the introduction of a
cubic momentum cutoff which breaks the translation invariance of the theory. To account for this
situation the following notation is introduced:

p̃i =
2
a

sin
(api

2

)
, p̊i =

1
a

sin (api) and
∫

dp =
d∏

i=1

∫ π/a

−π/a

dpi
2π

(7.31)

Here p̃i is the lattice momentum and a the lattice spacing. Correlators are calculated analogous to
HTL perturbation theory [18] with ordinary momenta appearing in the resummed propagators and
vertices replaced by their lattice counterparts. The ensuing modification of dispersion relations of
the resummed gluon propagator results in the following hierarchy of length scales:

1. Hard Scale a
Most energy resides at the cutoff scale ∼ π/a where the thermal energy distribution is cut
off artificially. The lattice spacing corresponds to the typical inter-particle spacing.

2. Electric Scale
√
a/g2T

Beyond this length scale electrical interactions are screened due to the longitudinal gluon
mass mD,L (see below).

3. Magnetic Scale π/g2T

Magnetic interactions, which remain the most far reaching interactions in the lattice model,
are screened dynamically at this length scale. The non-perturbative physics beyond this
length scale is accounted for in the classical approximation.

Since the lattice spacing is presumed to be a ∼ 1/T for the classical model the scale hierarchy of
thermal Yang-Mills theory is reproduced. To supplement this argument with a more precise scale
relation the Debye masses of the continuum and lattice theory can be equated

m2
D =

N

3
g2T 2, m2

D,L =
NΣ
2π

g2T

a
(7.32)

where Σ = 3.175911536 . . . to fix the lattice spacing to

a =
3
2

Σ
πT

. (7.33)

The physics at the soft electric and magnetic scales matches the physics at the corresponding
scales in the continuum for quantities insensitive to the hard scale. Close to the momentum cutoff
the physics of the classical lattice model differs drastically from the hard scale in the continuum.
The lattice counterpart to hydrodynamics is affected dramatically by the maximal deformation of
momenta at this scale invalidating any measurement of the shear viscosity or related quantities. It
is therefore again necessary to emphasize that the classical approximation relies on a separation
of hard and soft scales which must be established for individual observables in Yang-Mills theory.
Techniques to remedy this situation are discussed in chapter 9.
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7.6 Statistical Ensemble as Lattice Yang-Mills Theory with adjoint Higgs

The task of implementing this model in a numerical simulation consists of generating a statistical
ensemble of initial lattice configurations according to the partition function (7.14) and integrating
the equations of motion for each ensemble configuration. To address the first part of the problem
the partition function (7.11) of the classical model in the continuum shall serve as a starting point.
The Gauss constraint can be reexpressed using the identity

δ(DiE
i) =

∫
[Dϕ] exp

{
iβ
∫

d3xTr[EiDiϕ]
}
, (7.34)

where ϕ = ϕaT a is a suitably scaled adjoint scalar field and Diϕ = ∂iϕ − ig[Ai, ϕ] is the usual
covariant derivative in the adjoint representation. A partial integration has been performed in the
exponent to remove the covariant derivative from the color electric field. The partition function
(7.11) is rewritten as:

Zcl =
∫

[DA][DE][Dϕ] exp
{
−β
∫

d3xTr
[

1
2
FijF

ij − Ei(Ei + iDiϕ)
]}
. (7.35)

Upon performing the Gaussian integrations over the adjoint components of color electric fields the
partition function of a 3-dimensional Yang-Mills theory coupled to a massless adjoint Higgs field
results up to a prefactor which is irrelevant for the calculation of observables:

Zcl =
∫

[DA][Dϕ] exp
{
−β
∫

ddxTr
[

1
2
FijF

ij − 1
4

DiϕDiϕ

]}
. (7.36)

By introducing the momentum space cutoff ki < Λcl the partition function for the classical lattice
model (7.14) is reexpressed as

ZL =
∫

[DU ][Dϕ] e−βHL , (7.37)

where the lattice Hamiltonian is chosen as [80, 81]:

HL =
∑

x


βL

∑

i<j

{
1− 1

N
Re TrUij

}
+
βL
N

Tr

{
φ(x)φ(x)− κ

∑

i

φ(x)Ui(x)φ(x+ î)U+
i (x)

}
 .

(7.38)
The adjoint Higgs ϕ is defined at every lattice site and has been rescaled to lattice units a2gϕ ↔
2
√
κϕ. The coupling constant between the scalar and gauge field is κ = 1/3. To generate gauge

field configurations according to this partition function the heatbath algorithm and overrelaxation
techniques described in chapter 6 for pure lattice Yang-Mills theory must be adapted to this model.
Note that the adjoint Higgs is merely an auxiliary field to generate an ensemble of gauge field
configurations according to the partition function (7.37). The electrical fields, required for the
real-time evolution of the lattice system, are drawn from a Gaussian distribution and projected
onto the hypersurface of field configurations satisfying the Gauss constraint in a subsequent step
[82]. The algorithm is designed to make the extensive and time-consuming thermalization pro-
cedures previously required in classical lattice simulations redundant. Note that the duality of
the classical statistical theory to a Yang-Mills theory with an adjoint Higgs is not exact on the
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lattice. Conventional thermalization techniques [82] can be used in a final phase of the thermaliza-
tion to approach the equilibrium distribution to arbitrary precision. The heatbath algorithm for
d-dimensional SU(N)-Yang-Mills theory with an adjoint massless Higgs is implemented as follows:

1. Scalar Update
The heatbath update for the scalar field is introduced by noting that the adjoint components
of the shifted scalar field

ϕ′(x) = ϕ(x)− κ

2

∑

ϕ

Ui(x)ϕ(x+ î)U+
i (x) (7.39)

are Gaussian. The distribution for the scalar field can thus be generated exactly by drawing
the adjoint components of ϕ′ from a Gaussian of standard deviation σ =

√
N/βL and per-

forming the shift to the original field ϕ. An even-odd preconditioning is necessary for parallel
implementation.

2. Gauge Update
To account for the coupling term between the gauge and Higgs field an additional accept/reject
step is introduced. Gauge links suggested by an update of all SU(2) subgroups with the
Cabbibo-Marinari heatbath described in chapter 6 are now accepted with probability:

PA(U ′i(x)← Ui(x)) = min

(
1,
w(U ′i(x))
w(Ui(x))

)
(7.40)

where
w(Ui(x)) = exp

{
κβL
NT

Tr
[
φ(x)Ui(x)φ(x+ î)U+

i (x)
]}
. (7.41)

The interaction term between the scalar and gauge field can also be accounted for in the overrelax-
ation of gauge fields by supplementing the Metropolis accept/reject step after each overrelaxation
trial. As aluded to previously the function of this algorithm is merely to generate a properly dis-
tributed ensemble of gauge field configuration {Ui(x)}. The electrical fields are generated for each
ensemble configuration by drawing their adjoint components from a Gaussian of standard deviation
σ =

√
2N/βL. To take into account Gauss law (7.17) the electrical fields are projected onto the

hypersurface of field configurations satisfying this constraint by repeated use of the projection step

Ei(x)→ Ei(x) + γ(Ui(x)C(x+ î)U+
i (x)− C(x)) (7.42)

where C(x) is the violation of Gauss’s law and the parameter γ < 1/6 is typically chosen as γ = 0.12.
Note that the electrical fields remain Gauss distributed according to (7.14) during the projection
procedure. Typically several hundred subsequent iterations of this projection step are required to
reduce the violation of the Gauss constraint to a negligable order of magnitude. Techniques for the
generation of an ensemble of field configurations according to the partition function (7.14) found
in the literature [82] rely on repeatedly drawing electrical fields from a Gaussian distribution, pro-
jecting on the Gauss hypersurface and distributing the injected energy to the gauge fields using the
equations of motion. The overall time required for generating initial field configurations typically
exceeds the actual measurement time and is virtually eliminated by the procedure described in this
section. A significant performance gain has been achieved in comparison with previous techniques.
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7.7 Integration of the Equations of Motion

Before discussing the numerical integration of the equations of motion of the lattice system a
general classical system is considered characterized by a set of coordinates {φi}, i ∈ {1, . . . , n} and
conjugate momenta {πi}. The associated phase space is denoted as Λ = {φi, πi}. The classical
equations of motions (shown in a Hamiltonian form with H : Λ→ R)

π̇i = −∂H
∂φi

and φ̇i =
∂H

∂πi
(7.43)

are a symplectomorphism which leaves the phase space product dφidπi invariant. Any integrator
f : Λ→ Λ, which is intended to reproduce the classical time evolution of the system over a discrete
time interval, is required to satisfy the same constraint. Formally an integrator is called symplectic,
if it has the structure of a Lie group with the Poisson bracket of transformed coordinates and
momenta {φ′, π′} = f({φi, πi}) serving as a Lie bracket:

{φ′, π′} =
∑

i

[
∂φ′

∂φi

∂π′

∂πi
− ∂φ′

∂πi

∂π′

∂φi

]
= 1. (7.44)

Let ψ = {φi, πi} ∈ Λ be a phase space state at time t = 0 which evolves in time according to

ψ̇ = {ψ,H} = Ĥψ ⇒ ψ(t+ ∆t) = e∆tĤψ(t), (7.45)

where the Poisson bracket is defined to act on all components of ψ and Ĥ is the time evolution
operator. If the Hamiltonian can be decomposed into a kinetic and potential term according to
H({φi, πi}) = T ({πi}) + V ({φi}), the evolution over the discrete time interval ∆t takes the form

ψ(t+ ∆t) = e∆t(T̂+V̂ )ψ(t) =
m∏

i=1

eai∆tV̂ ebi∆tT̂ + O(∆m+1
t ) (7.46)

where m is called the order of the integrator and the coefficients {ai, bi} are determined from
the Baker-Campbell-Hausdorff formula. The operators T̂ , V̂ are the time evolution operators for
the coordinates {φi} and conjugate momenta {πi} and are defined by the time derivative of the
respective quantity in analogy to (7.45).
For the integration of the Euler-Lagrange equations (7.28,7.29) of the classical lattice system the
second order Verlet integrator, called leapfrog, with coefficients a1 = a2 = 1/2, b1 = 1 and b2 = 0 is
used. The color electric fields Ei(x, t) are consequently defined at times (k + 1/2)∆t while gauge
fields are defined at times k∆t where k ∈ N. The discretized equations of motion take the following
form [t = k∆t, k ∈ N]:

Ui(x, t+ ∆t) = exp(i∆tEi(x, t+
∆t

2
))Ui(x, t) (7.47)

and

Ei(x, t+
∆t

2
) = Ei(x, t−

∆t

2
) + 2∆tT

aIm Tr



T

a
∑

|j|6=i
Uij(x, t)



 . (7.48)

Note that the initial time step in the leapfrog evolution is of length ∆t/2 with both color electric
and gauge fields generated by the algorithm described in the previous section defined at time t = 0.
Since this time step can not be symmetrized and ∆t is defined in lattice units, it is the only source
of O(a) errors in the entire simulation.
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Figure 7.3: Flow chart illustrating the general structure of the classical lattice simulation.

7.8 Summary of the Algorithm

The general structure of the classical lattice simulation is shown in figure 7.3. In the preceeding
chapter the following parts of the algorithm required a detailed discussion:

1. Generation of Gauge Fields
An ensemble of link configurations distributed according to (7.14) is generated by coupling the
gauge fields to an auxiliary adjoint Higgs field. An overrelaxed Cabbibo-Marinari heatbath
supplemented by an accept/reject step to take into account the Higgs field is used for gauge
updates. The scalar update relies on an overrelaxed adaption of Bunks algorithm [83].

2. Projection on Gauss Hypersurface
Since field configurations are required to satisfy Gauss’s law electrical fields need to be pro-
jected on the hypersurface defined by this constraint after being drawn from a Gaussian. A
single iteration of the projection algorithm consists in the update

Ei(x)→ Ei(x) + γ(Ui(x)C(x+ î)U+
i (x)− C(x)), (7.49)

where C(x) is the violation of Gauss’s law and the parameter γ < 1/6 is chosen as γ ' 0.12.

3. Classical Time Evolution
The Euler-Lagrange equations (7.28,7.29) of the classical lattice system are implemented using
a leapfrog scheme which consists of the subsequent update steps

Ui(x, t+ ∆t) = exp(i∆tEi(x, t+
∆t

2
))Ui(x, t) (7.50)

and

Ei(x, t+
∆t

2
) = Ei(x, t−

∆t

2
) + 2∆tT

aIm Tr



T

a
∑

|j|6=i
Uij(x, t)



 . (7.51)





8 Application: Diffusion and Deconfinement

He who seeks for methods without having a definite problem
in mind seeks in the most part in vain.

David Hilbert

In this chapter the classical lattice model will be used to assess the extent of non-perturbative
to real-time quantities inaccessible to ordinary lattice simulations. In the first part of this chap-
ter, where many physical and technical aspects of the classical lattice model will be highlighted,
the momentum diffusion of heavy quarks is investigated . In the second part of this chapter a
measurement of the imaginary part of the real-time static potential, introduced in chapter 4, is
presented.

8.1 Momentum Diffusion of Heavy Quarks

One of the simplest quantities to be evaluated in this context is the momentum diffusion coefficient
for a heavy non-relativistic quark with mass M � T . Since the typical quark momentum pq ∼√
MT is much larger than the typical gluon momentum pq ∼ T , the diffusion occurs by the

accumulation of small kicks and can be described by a Langevin equation of the form:

dpi
dt

= −ηDpi + ξi(t), 〈ξi(t)ξj(t′)〉 = κδijδ(t− t′). (8.1)

The random force ξ experienced by the quark is gaussian with the diffusion constant κ related to
the relaxation rate ηD by a fluctuation dissipation relation:

ηD =
κ

2MT
. (8.2)

It is therefore sufficient to calculate the diffusion constant to parametrize the momentum diffusion
of a heavy quark in the quark-gluon plasma. The diffusion constant is defined by the mean squared
momentum transfer per unit time. It was shown in [84] that in the limit of infinite quark mass it
can be calculated from the correlator of two electric fields separated in time and connected by a
straight fundamental Wilson line W0→t:

κ(ω) =
g2

3N

∫
dteiωt Tr〈W+

0→tEi(t)W0→tEi(0)〉. (8.3)

The diffusion constant κ = κ(0) is obtained as the electric field correlator integrated against time.
Chromo-magnetic forces are neglected due to the vanishing speed of the quark. This coefficient is
of a particular interest since a considerable elliptic flow and energy suppression of heavy quarks
is observed in heavy ion collisions which indicates a rapid thermalization of c- and b-quarks. The
experimental evidence, showing a strong interaction of these high momentum particles with the
surrounding medium, is surprising and hard to accommodate with weak-coupling calculations of
the diffusion coefficient. It must therefore be expected that the perturbative result discussed in
the following will be significantly enhanced by non-perturbative processes. It is straightforward to
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2

2

FIG. 1: Leading-order contribution to heavy quark diffusion
and its correspondence to scattering processes. On the left
the double line represents the Wilson line; on the right it is
the heavy quark external states.

in covariant and Coulomb gauges[14])

(2)⇒ CHg2

3

∫
d3p

(2π)3
p2 G> 00(ω = 0, p), (3)

where CH = 4
3 is the Casimir of the heavy quark’s repre-

sentation. This Wightman correlator can be evaluated in
terms of the squared matrix elements of t-channel scat-
tering processes involving the heavy quark, as illustrated
in Fig. 1. These are the only processes which contribute
in our case, Compton-like processes being suppressed in
the low velocity limit. The result reduces to [8]

κLO ≡ g4CH

12π3

∫ ∞

0

q2dq

∫ 2q

0

p3 dp

(p2 + m2
D)2

×





Nf nF (q)(1−nF (q))
(
2− p2

2q2

)

+Nc nB(q)(1+nB(q))
(
2− p2

q2 + p4

4q4

)
.
(4)

Here p is the transferred momentum and q is the energy
of the light scattering target. Since the heavy quark is at
rest, the initial and final light-particle energies are equal
and p is purely spatial, which is why the medium modifi-
cation of the exchanged gluon propagator is purely Debye
screening with a Debye mass m2

D = g2T 2(Nc + Nf/2)/3.
The inclusion of these HTL corrections is essential for
obtaining the complete leading order result, otherwise
κ would be infrared divergent in the region of soft mo-
mentum transfer p. Formally taking mD % T , the in-
tegral is dominated by q ∼ T and p in the parametric
range mD

<∼ p <∼ T . The strict leading-order evaluation
of Eq. (4) yields

κ ' CHg4T 3

18π

[
Nc

(
ln

2T

mD

+ξ

)
+

Nf

2

(
ln

4T

mD

+ξ

)]
, (5)

with ξ = 1
2 − γE + ζ′(2)

ζ(2) ' −0.64718.
When the exchange momentum p is hard, p >∼ T , then

higher loop corrections to the propagators and vertices in
Fig. 1 represent O(g2) corrections. However, the expres-
sion (4) for κ receives an O(g) contribution from scat-
terings against soft gluons, q ∼ mD. Both the dispersion
relations and the interactions of such gluons are modified
at the O(1) level; at leading order these modifications are

described by hard thermal loops. Therefore there will be
O(g) corrections to the above calculation. But this is
not the only source of O(g) next-to-leading order (NLO)
corrections.

Another source is associated with overlapping scatter-
ing events: the total scattering rate for a hard particle is
∼ g2T , and is dominated by t-Channel Coulombic scat-
terings involving soft momentum transfers. These soft
scatterings have a duration of order ∼ 1/mD ∼ 1/gT and
therefore there is an O(g) probability that two such scat-
tering events overlap with each other. This is relevant
in QCD (though not in QED, see below) because each
scattering color-rotates the participants.

P

Q

R
PQ

R

(A) (B)

Q

P P

Q

(C) (D)

FIG. 2: Diagrams required at NLO. The double line is the
Wilson line; otherwise all propagators are soft and HTL re-
summed and all vertices include the HTL vertex. All lines
attached to the Wilson line are longitudinal.

We need a systematic way of evaluating these NLO
effects. This is provided by a loopwise expansion for
Eq. (2). The diagrams needed at NLO are shown in
Fig. 2. The diagrammatic series is convergent in pow-
ers of g provided one incorporates HTL corrections in
propagators and vertices wherever momenta are soft [9],
unless a diagram is sensitive to the magnetic scale∼ g2T ,
which would be signaled by an infrared divergence in the
evaluation of a Feynman diagram. This does not occur in
the current calculation; the diagrams shown in Fig. 2 are
all IR and UV convergent, after the leading-order con-
tribution is subtracted off from the transverse, pole-pole
contribution of diagram (A). Since the momenta are soft,
the ordering issues for the Wilson lines are subdominant
and we may replace the two Wilson lines in Eq. (2) with
an adjoint Wilson line; all diagrams involve the group
theoretic combination CHCA and we may represent the
NLO correction as the coefficient C defined by

κ=
CHg4T 3

18π

([
Nc+

Nf

2

][
ln

2T

mD

+ξ

]
+

Nf ln 2
2

+
NcmD

T
C

)

(6)
with O(g2) corrections. There is no O(g) NLO correction
in QED, where the (bare and HTL) vertices involved in
diagrams (A), (B), (C) do not exist and the Wilson line

Figure 8.1: The Wightman propagator (left) representing the correlator of A0 fields along the Wilson line
shown as a double line corresponds to the squared matrix element (right) for scattering between a static
quark and a gluon or ghost indicated by a solid line.

obtain the diffusion constant κ(ω = 0) to leading order by using the definition Ei = F0i of the
chromo-electric field. In a Coulomb or covariant gauge the following expression must be evaluated
[85]:

κ =
CF g

2

3

∫
d3p

(2π)3
p2G̃00

21(ω = 0,p). (8.4)

To remove logarithmically divergent contributions the Wightman propagator is evaluated as the
squared matrix element of t-channel scattering process involving the heavy quark (see figure 8.1).
Contributions from Compton like processes are ignored in the static limit. The following expression
is obtained:

κ =
8πg4CFN

3

∫

p�T

d3p

(2π)3

p2

(p2 +m2
D)2

∫
d3q

(2π)3
δ((p− q)2 − q2)qnB(q)(1 + nB(q)). (8.5)

The heavy quark diffusion constant to leading order is therefore given by:

κ ' g2CFTm
2
D

6π

(
ln

T

mD
+ . . .

)
. (8.6)

To match the continuum result to lattice measurements discussed in the next section the HCL-
formalism introduced in the previous chapter is used. The lattice regularized result in the limit
~→ 0 is obtained by replacing the statistical factors nB(q), 1 +nB(q) with their classical limit T/q
and introducing the lattice momenta p̃ defined in (7.31). By approximating the argument of the δ-
function via

(p̃− q)2 − q̃2 = 2p̃ · q̊ + O(p2
i ) (8.7)

the following expression for the heavy quark diffusion constant is obtained in the classical lattice
model:

κL '
4πg4T 2CFN

3

∫
dp

p̃2

(p̃2 +m2
D,L)2

∫
dq
δ(p̃ · q̊)

q̃
. (8.8)

The δ-function is removed by viewing the momentum p as a continuum variable p ∼ mD,L � 1/a
and carrying out the angular integration:

κL '
g4T 2CFN

3π

∫
dq

1√
q̃2q̊2

(
ln

1
amD,L

+ . . .

)
(8.9)

The constant obtained by the momentum integral over the Brillouin zone is found to be 1.8313(2)
(see [55]).
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Figure 5: Numerical results for the function a3κlatt (open symbols), compared with the weak-coupling
prediction from Eq. (3.3) for βL = 24 (line). The left plot is for SU(2), the right one for SU(3). For the
(unphysical) case βL = 1, included as a reference for the discussion in Appendix B, we have divided
the central values (but not the error bars) by a factor 10.

a3κlatt(ω) at various βL, together with a comparison with the free theory result. Noting that
on the 4-dimensional lattice, β = Nτaτ , where Nτ , aτ are the number of lattice points and
the lattice spacing in the time direction, respectively, and naively enforcing the replacement
of the classical limit of the Bose-Einstein distribution function, T/ω, by the corresponding
quantum mechanical expression, 1/2 + nB(ω), we can expect κcont(ω) to behave as

κcont(ω) ! ωaτNτ

2
coth

(
ωaτNτ

2

)
κlatt(ω) . (4.5)

In particular, for ω " T , κcont(ω) should be completely flat just like κlatt(ω); moreover, in
general, κcont(ω) should show no peaks other than at ω ∼ (1.5−3.0)/a, where a is the spatial
lattice spacing. We consider these qualitative features to be relatively robust, and they can
in any case serve as crosschecks on particular practical inversions of Eq. (4.4).

Finally, we remark that the corresponding spectral functions computed for N = 4 Super-
Yang-Mills theory at infinite ’t Hooft coupling in continuum show an analogous smooth
behavior at small frequencies, taken over by ultraviolet physics at ω ∼ T [4, 37].

5. Summary and Outlook

The purpose of this paper has been to make use of classical lattice gauge theory, in order to
gain insights on the dynamics of QCD in the temperature range accessible to current and near-

14

Figure 8.2: Shape of the correlator κ(ω) as obtained in the classical lattice simulations for SU(2) (left) and
SU(3) (right). The solid line is the analytical prediction from lattice regularized perturbation theory for
βL = 24.

8.2 Measurement of the Electric Field Correlator

Due to the temporal gauge the Wilson lines, connecting the electrical fields are fixed to unity in the
classical lattice model, and the electric field correlator κj(t) is defined by the following expression
for an arbitrary initial configuration j:

a4κj(t) =
1

3N
Tr〈Ei(t′ + t)Ei(t′)〉. (8.10)

Note that the electrical fields on the lattice are related to the electrical fields in the continuum
via Ei → a2gEi. The measurement for a given initial configuration j is performed by storing the
electric field at a set of starting times {t′k} and measuring the correlator (8.10) in each subsequent
time step of length a∆t. To make optimal use of each initial configuration, the correlator is averaged
over all starting times {t′k}. To obtain the spectrum of the correlator a subsequent Discrete Fourier
Transform (DFT) of the correlator is performed

κj(ω) = a∆t

Nt∑

t=−Nt
ei∆tωt κj(t) (8.11)

where Nt is the number of time-steps for the measurement and the frequency ω → aω is given in
lattice units. The time dependence of κ(t) for t < 0 is obtained by mirroring the correlator to
negative times using the symmetry of (8.10) with respect to time reversal. The diffusion constant
is finally obtained by averaging over all Nconf ensemble configurations

κ(ω) =
1

Nconf

∑

j

κj(ω), (8.12)

and reading of the static limit κ(ω = 0). The Jacknife error (6.38) of κ(ω) is obtained in the
usual fashion by omitting subsets of configurations forming the statistical ensemble. The time step
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Figure 1: The correlation function κ(t) (left) and its Fourier transform κ(ω) (right) in the quantum
continuum and classical lattice theories, at leading order (free level). To relate the theories, we convert
the lattice spacing a to the inverse temperature 1/T by equating Debye lengths for the pure-glue theory
(Nf = 0), whereby a = 3Σ/2πT (cf. discussion below Eq. (2.2)).

g2CFT 4π2/(πtT )4. In the classical lattice theory, on the other hand,

κlatt(ω) =
2πg2CFT

3

∫ π/a

−π/a

d3p
(2π)3

[
δ(p̃ − ω) + δ(p̃ + ω)

]
, (3.3)

κlatt(t) =
2g2CFT

3

∫ π/a

−π/a

d3p
(2π)3

cos(p̃t) , (3.4)

where p̃ ≡
√

p̃2, p̃2 ≡ ∑
i p̃

2
i ≡

∑
i(

2
a sin api

2 )2. The results are plotted1 in Fig. 1. At first
sight the lattice correlator and the vacuum-subtracted thermal correlator do not look alike:
the main difference is in the large-time behavior, where the continuum correlator dies away
but the lattice correlator displays decaying oscillations. The difference is explained when we
look at the frequency-domain correlation functions. Here we see that the lattice correlator
has cusps while the continuum correlator is smooth. The cusps are van Hove singularities
which arise because the lattice excitations follow a modified dispersion relation2,

ω2
latt(p) = p̃2 , (3.5)

which has vanishing slope at the corners of the Brillouin zone, p = (n1, n2, n3)π/a, leading
to cusps in the density of states at ω2

latt = (4, 8, 12)/a2 . These van Hove singularities are
1The “thermal part” is the difference of the full and vacuum parts, and it is this difference which is relevant

for heavy quark thermalization.
2The dispersion relation for the “improved” action is more complicated, see Eqs. (66,67) of ref. [33]

[Eqs. (63,64) in the journal version]; the overall sign is wrong in the latter equation.

6

Figure 8.3: The correlator κ(t) (left) at leading order and its Fourier transform κ(ω) (right) in the continuum
and on the lattice with ordinary and improved [86] action.

was chosen as ∆t = 0.05 to minimize discretization effects. The lattice volume V and number of
ensemble configurations Nconf for each measurement at a fixed β were chosen as V > (20a)3 and
Nconf ' 200. The spectrum of the correlator as obtained from the classical lattice simulation is
shown in figure 8.2 for different values of βL. A solid line in figure 8.2 shows the tree level spectrum
of the correlator in HCL perturbation theory for βL = 24. The prediction is obtained by taking
the classical limit of the tree level correlator in the continuum

κ(ω) =
2πg2CFT

3

∫
d3p

(2π)3
[δ(p− ω) + δ(p+ ω)] (8.13)

and replacing the momenta p by their lattice counterparts p̃ with the momentum integration re-
stricted to the Brillouin zone as usual. The lattice regularized result in the classical limit therefore
takes the form:

κL(ω) =
2πg2CFT

3

∫
dp [δ(p̃− ω) + δ(p̃+ ω)] (8.14)

As illustrated in figure 8.3 the cusps appearing in the lattice spectra towards large ω are van Hove
singularities arising from the modified dispersion relation

ω2(p) = p̃2 (8.15)

which has vanishing slopes at the edges of the Brillouin zone p = (n1, n2, n3)π/a where ni = ±1.
The cusps in the correlator are therefore discretization artifacts which have little impact on the
behavior of the correlator at small ω, where the diffusion constant is defined. Here the lattice
regularized spectrum is identical to the continuum expression. The flatness of the spectrum around
the origin, where the heavy quark diffusion constant is defined, indicates that this quantity can, in
principle, be reliable measured in an ordinary lattice simulation. It is therefore a realistic prospect
to analyze the puzzle of the rapid thermalization of heavy quarks in a quark-gluon plasma in the
context of the full quantum theory [87].
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Figure 2: Numerical results for the intercept κlatt (open symbols), compared with the weak-coupling
prediction from Eq. (3.13) (line). The left plot is for SU(2), the right one for SU(3). Note that
1/βL = g2Ta/2Nc scales like αs, assuming the matching a ∼ 1/T (cf. discussion after Eq. (2.2)).

4.1. Intercept at ω → 0

Our numerical results for κlatt, compared with the leading-order weak-coupling result, are
shown in Fig. 2, both for SU(2) [included because a large βL-range could be scanned with a
modest numerical effort] and for SU(3).4 We note, first of all, that at large βL, the results
approach the analytic ones of Eq. (3.13). However, as soon as βL <∼ 100, the non-perturbative
results deviate from the leading-order ones. The non-perturbative results are always larger
than the perturbative estimate. For βL = 1...10, a crossover takes place5 from one type
of behavior to another. At βL # 1, the results approach the behavior of Eq. (3.15). (We
have not worked out the numerical prefactor for Eq. (3.15), and hence do not show the
corresponding curves in Fig. 2.)

In order to make quantitative use of the numerical results, it is convenient to change the
units of both axes. Recalling the definition of m2

D,latt from Eq. (2.2), we choose the variable
g2NcT/mD,latt = 2Nc(π/ΣβL)1/2 as the x-coordinate; this quantity is the ratio of the g2T

to gT scales and is therefore the expansion parameter for perturbation theory at the scale
gT . We also divide a3κlatt by the coefficient of the leading logarithm, a3g2CFTm2

D,latt/6π =
CFN3

c Σ/3π2β2
L. In these units, the lattice results have a direct counterpart in the continuum

4In the numerical implementation the theory is discretized in time as well as space, but with a much finer

spacing, and our numerical results for κlatt represent the limit of zero temporal spacing. We have also checked

that our results contain no significant finite volume or non-zero ω artifacts.
5We have checked that there is no actual phase transition in the thermodynamics of the system.

10

Figure 8.4: The heavy-quark diffusion constant κL plotted against the inverse lattice coupling βL for SU(2)
(left) and SU(3) (right).

8.3 Physical Result

The heavy quark diffusion constant as obtained from the classical lattice simulations for SU(2)
and SU(3) is compared to the perturbative prediction (8.14) obtained in the HCL framework in
figure 8.4. While the lattice results are in perfect agreement with the perturbative prediction
towards vanishing lattice coupling, the slope with which the diffusion constant decreases towards
higher lattice coupling is smaller than predicted in perturbation theory. A significant difference
is observed at intermediate couplings, where the classical theory is still expected to capture the
non-perturbative behavior of soft gauge fields correctly. It is important to point out that in this
parametrical regime the plaquette expectation value

〈P 〉 = 〈1− 1
N

Tr
∑

i<j

Uij〉 (8.16)

which is proportional to the magnetic energy density changes significantly. Since the physics at
the magnetic scale is non-perturbative, it is not surprising to see a difference between the weak-
coupling prediction and the classical result arising towards the phase transition. The result therefore
seems to indicate a significant enhancement of the diffusion of heavy color charges in the Yang-
Mills plasma due to non-perturbative physics. A drastic change in the βL-dependence of the
correlator is observed upon entering the strong coupling regime at βL ≈ 1

2N , with the diffusion
constant κ becoming proportional to β

−5/2
L . The behavior of κ in this regime is expected to be

shaped by discretization effects as will be shown in detail in the following section. As discussed
in [87] the vanishing slope of the correlator κ(ω) for small ω indicates that it is possible to obtain
a reliable estimate for the diffusion constant in ordinary lattice simulations from an analogous
correlator in euclidean space. The expected shape of the correlator is confirmed in the classical
lattice simulations, indicating the possibility of solving the puzzle of the rapid thermalization of c−
and b− quarks in the quark-gluon plasma in the context of full QCD.
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Figure 4: κlatt using the “improved” lattice action. Left: the overall behavior in lattice units. Right:
a magnification of the weak-coupling regime, normalized to the leading-order perturbative behavior.
The weak-coupling behavior is in good qualitative accord with the standard action, but the strong
coupling behavior is qualitatively different (cf. Figs. 2, 3).

following the suggestion of ref. [22] in order to measure κcont with Euclidean lattice Monte
Carlo methods. Indeed, there may well be an exciting qualitative discovery to be made on
the lattice.

4.2. General shape of the spectral function

On the point of lattice Monte Carlo simulations, ref. [22] argued that the Euclidean analogue
of Eq. (1.1) leads to a correlator, denoted by GE(τ), which has a non-trivial continuum limit
and can be related to the intercept κcont through standard relations. Specifically, the task
would be to invert the relation

GE(τ) =
∫ ∞

0

dω

π
κcont(ω)

cosh
(

β
2 − τ

)
ω

cosh βω
2

. (4.4)

It is a problem, though, that strictly speaking the relation in Eq. (4.4) is not invertible
without further input. In practice, this means that a certain Ansatz (sometimes called a
prior) is needed, which is then refined through the numerical data. For this reason, significant
efforts have been devoted to analytic computations of spectral functions in the presence of a
spatial lattice, in the limit of a high temperature, for cases such as the 2-point correlator of
the vector current of heavy quarks [36].

We can now use our data, both perturbative as well as non-perturbative, to obtain an
Ansatz for the spectral function κcont(ω). In Fig. 5, results are shown for the function

13

Figure 8.5: The heavy-quark diffusion constant κL obtained from a classical lattice with improved action
plotted against βL and g2NT/mD,L for SU(2).

8.4 Lessons for the Strong Coupling Regime

In the strong coupling regime β−1
L →∞ the diffusion constant diverges as β−5/2

L as shown in figure
8.5. Since the lattice coupling is β−1

L = a(g2T/2N) it is natural to expect discretization effects to
dominate in this regime and to assume that the behavior of the correlator can not be related to
Yang-Mills theory in the continuum. This point is illustrated by a measurement of the correlator
with an alternative lattice action [86, 55]. While the behavior of both discretizations agrees in the
weak coupling regime, the results in the strong coupling are incompatible even on a qualitative
level. To understand the behavior of the correlator for the standard action in this regime, it is
instructive to look at the classical equations of motion

U̇i(x, t) = iEi(x, t)Ui(x, t), Ėai (x, t) = 2
∑

|j|6=i
Im Tr {T aUij(x, t)} . (8.17)

Spatial links are compact and the time derivative of Ei in the second equation is therefore bounded.
In the strong coupling regime β−1

L →∞ the link matrices become random elements of SU(N) and
the mean squared value of the electrical field increases 〈|Eai |2〉 linearly with β−1

L . The electrical
field therefore evolves by Langevin dynamics with the random force appearing as the products of
four randomly rotating links forming the associated plaquettes. The time scale for a link to rotate
by an O(1) angle is t/a ∼ 1/|Eai | ∼ β

−1/2
L . A random variable Eai with 〈|Eai |2〉 ∼ β−1

L experiencing
a random force of magnitude ∼ 1 with coherence time ∼ β1/2

L behaves as

〈Eai (t)Eai (0)〉 = 〈|Eai |2〉 exp (−tβ3/2
L ). (8.18)

Performing the time integration the diffusion constant is identified as κ ∼ β−5/2
L for β−1

L →∞. The
argument given here is based on the fact that the time derivative of the electrical field is bounded
on the lattice which is not the case in the continuum. The result obtained in the strong coupling
limit is therefore an artifact of the lattice discretization.
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Figure 8.6: A measurement of the absolute value of the Wilson-Loop Ccl(t, r) for SU(3) on a small lattice
with V = 123 and lattice coupling βL = 16.

8.5 Imaginary Part of the Real-Time Static Potential

In this section I will discuss a measurement of the imaginary part of the real-time static potential
introduced in chapter 4. As discussed in that chapter this quantity is associated with the Lan-
dau damping phenomenon induced diagrammatically by the symmetric component of the gluon
propagator. A measurement of this quantity is therefore of particular interest, since this aspect of
thermal physics is captured particularly well by the classical model (see chapter 7). In addition,
the imaginary part of the real-time static potential receives no UV-contributions requiring a reg-
ularization of the result and can therefore be expected to be insensitive to the nature of the hard
scale. The lattice study consists in measuring a rectangular Wilson loop Ccl(t, r) of spatial extent
r = |r| and temporal extent t

Ccl(t, r) =
1
N

Tr〈Wt′,r′→r′+rW
+
t′+t,r′→r′+r〉 (8.19)

in the classical simulations. Note that temporal Wilson lines are fixed to unity due to the temporal
gauge. The fall-off of the correlator, which becomes exponential at large times as illustrated in
figure 8.6, is parametrized by the real-time potential

Vcl(t, r) =
i∂tCcl(t, r)
Ccl(t, r)

. (8.20)

To match the numerical results from the classical lattice model to the lattice regularized quantum
theory the time-dependence of the Wilson-Loop (8.19) was calculated in HCL-perturbation theory.
The calculation is technically difficult and was performed in [29]. The leading order time dependence
of the potential in the continuum serves as a starting point for the calculation:

V (t, r) = −g
2CF~
4π

[
mD +

e−mDr

r

]
+ δV (t, r) (8.21)
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Figure 8.7: Integration contour for the classical real-time static potential.

The Debye-screened part of the potential has been separated off with the remainder of the potential
taking the form:

δV (t, r) = g2CF~
∫

d3p

(2π)3
(1− cos p3r)

∫ ∞

−∞

dp0

π
p0
[
e−i|p0|t + nB(|p0|)

(
e−i|p0|t − ei|p0|t

)]
×

×
[(

1
p2
− 1

(p0)2

)
ρL(p0,p) +

(
1
p2

3

− 1
p2

)
ρT (p0,p)

]
. (8.22)

The expression was obtained in a euclidean setup in [28] and analytically continued to Minkowski
space with ρL and ρT being the spectral functions of the longitudinal and transverse components
of the resummed gluon propagator G̃R. In the HCL formalism the result takes the form

Vcl(t, r) = g2CFT lim
~→0

∫
dp(1− cos p3r)

∫ ∞

−∞

dp0

π

(
e−ip0t − eip0t

)
×

×
[(

1
p̃2
− 1

(p0)2

)
ρL(p0, p̃) +

(
1
p̃2

3

− 1
p2

)
ρT (p0, p̃)

]
, (8.23)

where the spectral functions are defined in the usual manner from the longitudinal and transverse
components ∆L,T of the retarded HCL gluon propagator:

ρL,T (p0,p) =
1
2i
[
∆L,T (p0 + iε, p̃)−∆L,T (p0 − iε, p̃)

]
. (8.24)

It is evident that the time independent Debye screened part of the potential due to single gluon
exchange vanishes and only the Bose enhanced component of δV (t, r) survives the classical limit.
This component will dominate in the large time limit and is therefore the defining contribution for
the imaginary part of the real-time static potential. The longitudinal and transversal components
of the retarded HCL propagator for the gauge field appearing in (8.24) have the general structure

∆L,T (p0, p̃) =
1

p̃2 − (p0)2 + ΠL,T (p0, p̃)
(8.25)

with the retarded HCL self energies obtained as [29]:

ΠL(p0, p̃) = 2g2TCA

(
1− (p0)2

p̃2

)(
Σ

4πa
−
∫
dq

1

q̃2

p0

p0 − p̃ · v

)

ΠT (p0, p̃) = g2TCA

[
(p0)2

p̃2

(
Σ

4πa
−
∫
dq

1

q̃2

p0

p0 − p̃ · v

)
+
∫
dq

q̊2

(q̃2)2

p0

p0 − ˜p · v

]
. (8.26)

CA denotes the adjoint Casimir and the quantity v is defined as vi = q̊i/
√
q̃2. The constant

Σ/4πa =
∫
dqq̃−2 is evaluated as Σ ' 3.175911535625. To isolate the imaginary part of (8.23)

the p0-integration is viewed as an integration contour in the complex plane and deformed suitably.
Since ρL is linear in p0 around the origin, the pole in the preceeding expression is cancelled and the
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Figure 8.8: Time-dependence of the imaginary part of V (t, r) as obtained from lattice-regularized perturba-
tion theory and classical simulations. Below is an overview of the results in the large-time limit for β = 16.
Results from classical and full HTL-improved simulations (amD > 0) agree within error bars.

expression is finite at p0 = 0. From (8.24) the integration contour on the left of figure is identified
and deformed as indicated. There are no poles outside of the real axis and ε may therefore be
chosen arbitrarily large without altering the result. As a consequence all terms multiplied by
exp (±i(p0 ± iε)t) must vanish at for t > 0. The imaginary part is finally obtained as:

Im
[
Vcl(t, r)
g2T

]
= 2CF

∫
dp(1− cos p3r)

{
t∆L(0, p̃)−

∫ ∞

−∞

dp0

2π
e−i(p0+iε)t ×

×
[(

1
p̃2
− 1

(p0 + iε)2

)
∆L(p0 + iε, p̃) +

(
1
p̃3

2 −
1
p̃2

)
∆L(p0 + iε, p̃)

]
(8.27)

The time dependence of the imaginary part of the potential measured in the classical lattice simu-
lations is compared to the lattice-regularised perturbative result in figure 8.8. All simulations were
performed with a time step of ∆ = 0.02a and ensemble-sizes > 100. Non-perturbative corrections
were found to amplify the imaginary part of the real-time static potential, which is extracted ac-
cording to (8.20) in the large time limit, by up to 100%, widening the quarkonium peak in figure
4.1 but leaving the qualitative structure unchanged. To assess the extent to which this quantity
receives corrections from physics at the hard scale so-called hard-thermal loop improved simulations
were performed which are described in detail in the next section. The modifications were found to
be small for reasonable values of the Debye mass amD in lattice units.
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9 Kinetic Theory

Understanding is, after all, what science is all about - and
science is a great deal more than mindless computation.

Roger Penrose

In this chapter the inclusion of leading order quantum effects in a classical framework is discussed.
The Yang-Mills Vlasov equations serve as a starting point and are subsequently transformed into a
form suitable for implementation in a semi-classical lattice model. The equations of motion on the
lattice are derived for a general (non-)equilibrium system and an algorithm for the generation of an
ensemble of initial configurations in thermal equilibrium is discussed. The algorithm relies on the
Monte-Carlo techniques previously introduced for the classical lattice model and virtually eliminates
spurious thermalization times required by conventional techniques. The chapter is concluded by a
schematic description of the simulation of kinetic theory in thermal equilibrium.

9.1 Yang-Mills Vlasov Equations

Leading order hard-mode contributions can be taken into account in the context of an effective
classical theory by integrating out the hard scale, i.e momenta of order T , and subsequently taking
the classical limit. The hard scale is parametrized by an effective hard mode distribution fa(x,p)
which influences soft classical fields by the associated color current. The time evolution of fa(x,p) is
found to be governed by a Boltzmann type equation and the effective theory can thus be interpreted
as describing a distribution of hard particles moving in the background of soft classical fields. The
non-abelian Yang-Mills Vlasov equations of the effective theory are given by the set of relations
[88, 89, 90]

(DµF
µν)a = (jν)a = g

∫
d3p

(2π)3
vνfa (9.1)

(vµDµf)a + gvµF aµi
∂f̄

∂pi
= 0, (9.2)

where the first equation is the classical Yang-Mills field equation. The second equation describes
the time evolution of the adjoint component of the momentum distribution of hard gluonic modes

f(x,p) = f̄(p)1 + fa(x,p)T a + ... (9.3)

which have been ignored in the purely classical model introduced in chapter 7. The singlet compo-
nent f̄ of the hard mode distribution does not interact directly with soft fields and is expected to
evolve on much longer time and length scales than the adjoint component. It is therefore introduced
as a homogeneous and time independent background distribution. The ultra-relativistic nature of
the plasma is accounted for by restricting hard mode momenta vp = (1,p/p) to the light-cone. By
integrating over the absolute momentum p = |p| in the second equation and defining the angular
distribution function

W a(x,v) = 4πg
∫ ∞

0

dpp2

(2π)3
fa(x,p) (9.4)
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the Yang-Mills Vlasov equations take a more convenient form. Choosing a temporal gauge the
following set of equations is obtained which has been substituted by the equation of motion for the
magnetic field following from the relation Ȧi = Ei,

Ḃ = −D×E,
Ė = D×B − j,

D ·E = −j0 (9.5)

and
Ẇ = −(v ·D)W −m2(E + (v ×B)) ·U(v), (9.6)

where the hard mode current j is defined as:

jµ =
∫

dΩv

4π
vµW. (9.7)

The first two relations are just the Yang-Mills field equations with an additional change in the elec-
tric field induced by a possible anisotropy of hard-modes along the direction i. Gauss’s law (9.5) in-
troduces the overall adjoint charge of hard modes at each point as a source for the chromo-magnetic
field. The Vlasov equation (9.6) finally describes the motion of hard modes in the background of
soft electric and magnetic fields. The quantity m2U i(v) is defined by the following integral:

m2U i(v) = −4πg2

∫ ∞

0

dpp2

(2π)3

∂f̄(pv)
∂pi

(9.8)

The effective mass m2, which has been introduced in the previous equation, corresponds to the
classical Debye mass in thermal equilibrium. It is defined by the relation:

m2 =
∫

dΩvM where M = 4πg2

∫ ∞

0

dpp2

(2π)3

f̄(pv)
p
|v=1. (9.9)

Note that classical Yang-Mills theory suffers from a Rayleigh-Jeans type divergence of the energy
density analogous to the divergence encountered in statistical electrodynamics. It has therefore not
been attempted to define any continuum limit in the classical lattice model introduced in chapter
7. This problem is remedied by the inclusion of leading order quantum effects. The set of kinetic
equations introduced in this section is free of ultraviolet divergences facilitating the definition of a
continuum limit in the corresponding lattice model.

9.2 Expansion in Spherical Harmonics

In the following the Yang-Mills Vlasov equations (9.5,9.6) will be transformed into a form suitable
for implementation in a semi-classical lattice simulation. The scheme outlined in the following
section is motivated by the need to find a suitable discretization for the unit sphere of directions
v. Several schemes have been put forward to tackle this issue and the approach outlined in the
following sections will rely on an expansion of the hard mode distribution W in spherical harmonics.
This approach is suitable for the purposes of a numerical implementation since the expansion can
be truncated at some finite order. As usual a temporal gauge will be chosen for the numerical
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implementation. No restriction will be made on the form of the background distribution f or
initial conditions for the hard mode distribution W . By expanding the adjoint components of the
hard mode distribution in spherical harmonics W a(x,v) = W a

lm(x)Ylm(v) the equation of motion
for the electrical field as well as Gauss’s law (9.5) take the form

Ė = D×B − W a
1m

4π
v∗m, D ·E = − 1

2
√
π
W a

00 (9.10)

where the following constants have been introduced:

vm =
∫

dΩY ∗lmv =




−δm1

√
2π
3 + δm,−1

√
2π
3

iδm1

√
2π
3 + iδm,−1

√
2π
3

δm0

√
4π
3


 . (9.11)

It is a more difficult task to derive a similar expansion of the Vlasov equation (9.6). In a first
step the coupling of the angular distribution to the singlet component f̄ is rewritten in a more
convenient form. Using the operator identity

∇pf̄ =
1
p
∇vf̄ + v

∂f̄

∂p
(9.12)

the quantity m2U(v) is related to the angular mass M by partial integration:

m2U(v) = −(∇v − 2v)M (9.13)

The Vlasov equation can now be rewritten to take the following form:

∂tW
a = −vi(DiW )a + (Eai + εijkv

jBk)(2v −∇v)iM, (9.14)

where the chromo-electric and -magnetic fields are obtained from the usual relations Ei = Ȧi and
−εijkBk = Fij respectively. The hard mode distribution is expanded in spherical harmonics in the
next step

W a = W a
lmYlm, W a

l,−m = (−1)mW a∗
lm, (9.15)

where the additional restriction on the right follows from the necessity to constrain the distribution
function W a ∈ R to the set of real numbers. By performing a subsequent angular integration of
the Yang-Mills Vlasov equation against Y ∗l′m′ a set of coupled Vlasov equations for the individual
spherical components W a

lm is obtained:

∂tW
a
lm = −Cilml′m′(DiWl′m′)a +m2Eai

EX
i
lm +m2Ba

i
BX

i
lm. (9.16)

The constants EX
i
lm and BX

i
lm parametrizing the influence of chromo-electric and -magnetic fields

on the evolution of the hard mode distribution are defined as

EX
i
lm =

∫
dΩvY

∗
lm(2vi −∇iv)Ω,

BX
i
lm = εijk

∫
dΩvY

∗
lmv

j∇kvΩ, (9.17)
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where the antisymmetry of εijk has been used to obtain the last expression. The distribution Ω is
defined as the normalized angular mass:

Ω =
1
m2

M. (9.18)

The constants Cilml′m′ parametrize the coupling between the Vlasov equations for individual spher-
ical components:

Cilml′m′ =
∫

dΩvY
∗
lmv

jYl′m′ (9.19)

The constants have been evaluated in [93] and can be expressed in the following form for l′ = l+ 1

Cilml′m′ =




1√
2

[
δm′,m−1A(l,−m)− δm′,m+1A(l,m)

]
i√
2

[
−δm′,m−1A(l,−m) + δm′,m+1A(l,m)

]

δm,m′B(l,m)


 (9.20)

where the coefficient A(l,m) and B(l,m) are defined via

A(l,m) =

√
(l + 2 +m)(l + 1 +m)

2(2l + 1)(2l + 3)
and B(l,m) =

√
(l + 1−m)(l + 1 +m)

2(2l + 1)(2l + 3)
. (9.21)

For l′ = l − 1 the following form is obtained:

Cilml′m′ =




1√
2

[
−δm′,m−1A(l′,m′) + δm′,m+1A(l′,−m′)

]
i√
2

[
δm′,m−1A(l′,m′)− δm′,m+1A(l′,−m′)

]

δm,m′B(l′,−m′)


 . (9.22)

If |l′ − l| 6= 1, the constants vanish. For many practical purposes it will be desirable to obtain
the constants EX

i
lm and BX

i
lm which parametrize the influence of the background distribution Ω

form a suitably truncated series of spherical coefficients Ωlm. An expansion in spherical harmonics
is greatly facilitated by expressing the gradient appearing in (9.17) using the angular momentum
operator L = −iv × ∇v. By calculating the commutator [v,L2] with the light-cone velocity the
following general identity is obtained:

[v,L2]|v=1 = 2
(
∇v − v

[
1 +

∂

∂v

])
(9.23)

The commutator acts on Ω in a similar way as the differential operator appearing in (9.17)

[v,L2]Ω = 2 (∇v − v) Ω− 2v
∂

∂v
Ω = 2(∇v + v)Ω ⇒ ∇vΩ =

1
2

[v,L2]− v. (9.24)

The identity is again derived by partial integration:

∂

∂v
Ω =

4πg2

m2

∫ ∞

0

dpp2

(2π)3

∂f̄

∂p
= −2Ω (9.25)
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9.3 Hilbert Space Representation

For practical applications it will be useful to obtain the constants EXi
lm and BX

i
lm from a spherical

representation of the singlet background. To present the corresponding relations in a compact form
it is convenient to choose a Hilbert space representation. Let H be a Hilbert space spanned by a
base of orthonormal states {|l,m〉}, l ∈ N,m ∈ {−l, . . . , l}. Any function φ : H → C defined on the
2-sphere is related to a state |φ〉 ∈ H in an unambiguous and consistent manner by introducing
the following dictionary:

φ = φlmYlm ↔ φ̂|l,m〉 = φlm|l,m〉, φ∗ = φ∗lmY
∗
lm ↔ 〈l,m|φ̂ = 〈l,m|φ∗lm

and

〈a|b〉 ↔
∫
dΩ a∗b. (9.26)

The spherical harmonics are thus seen as the basis of a Hilbert space with a vector product defined
by a unit sphere integration over the product of the associated functions. Using this dictionary the
constants Cilml′m′ are translated into the Hilbert space representation

Cil′m′lm = 〈l′m′|vj |lm〉. (9.27)

This relation as well as the following property of the squared angular momentum operator

L2|lm〉 = l(l + 1)|lm〉 (9.28)

can be used to obtain a representation of the constants EX
i
lm:

EX
i
lm =

∑

l′m′
Ωl′m′〈lm| −

1
2

[vi, L2] + 3vi|l′m′〉

=
∑

l′m′
Ωl′m′

(
3 +

l(l + 1)− l′(l′ + 1)
2

)
Cilml′m′ . (9.29)

In a final step the constants BXi
lm are related to the set of coefficient {Ωlm} representing the singlet

background:
BX

k
lm = −1

2
εijk

∑

l′m′
Ωl′m′〈lm|viL2vj |l′m′〉. (9.30)

The antisymmetry of εijk has again been used to represent the constants in a compact form. By
inserting unity in form of a sum over the set of vectors {|lm〉}, which forms an orthonormal base
of the Hilbert space, the constants can be evaluated to take the final form:

BX
k
lm = −1

2

∑

ab

εijk
∑

l′m′
Ωl′m′〈lm|viL2|ab〉〈ab|vj |l′m′〉

= −1
2

∑

abl′m′
Ωl′m′εijka(a+ 1)CilmabC

j
abl′m′ (9.31)
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9.4 Equations of Motion

The results of the previous sections are summarized below. The complete set of Yang-Mills Vlasov
equations in a temporal gauge is shown after rescaling the fields according to W a → m2W a and
using contravariant indices to facilitate a transition to the lattice:

∂tB
a
i = −εijkDjE

a
k ,

∂tE
a
i = εijk(DjBk)a +

m2

4π
(vim)∗W a

1m,

∂tW
a
lm = −(DiWl′m′)aCilml′m′ + Eai

EX
i
l′m′ +Ba

i
BX

i
l′m′ ,

DiE
a
i =

m2

2
√
π
W a

00. (9.32)

The time evolution for the magnetic field is obtained from the definition Ei = Ȧi. The background
distribution Ωlm enters the kinetic equations via the constants EX,BX which are listed here again
for convenience:

EX
i
′m =

∫
dΩvY

∗
lm(2vi −∇iv)Ω =

∑

l′m′
Ωl′m′

(
3 +

l(l + 1)− l′(l′ + 1)
2

)
Cilml′m′ ,

BX
i
lm = εijk

∫
dΩvY

∗
lmv

j∇kvΩ = −1
2

∑

abl′m′
Ωl′m′εijka(a+ 1)CjlmabC

k
abl′m′ . (9.33)

To gain an intuitive understanding of these equations, the reader should be aware that the first two
equations are just the ordinary Yang-Mills field equations with an additional change in the electrical
field Ei induced by the anisotropy of the hard mode distribution in the direction i. The additional
term corresponds to the hard mode distribution integrated against the unit vector v. Gauss’s
law in the last equation constrains the change in the electrical flux through an arbitrary volume
element to be equal to the overall adjoint charge of hard modes contained in this volume element.
It is no more difficult to gain an understanding of the Vlasov equation in the third line which
has been rewritten as an infinite set of inter-dependent equations for the spherical components
Wlm of the angular distribution of hard gluonic modes. Individual equations are directly coupled
via the gradient of the distribution. The effect of soft chromo-electric and magnetic fields on the
evolution of the momentum distribution is introduced by two additional terms relating the change
in the momentum distribution directly to the force exerted by the respective fields. In an isotropic
medium where Ωlm = δl0δm0 the constants BXi

lm vanish and the momentum distribution W is only
affected by electrical fields. The kinetic equations in the special case of thermal equilibrium are
obtained by setting the effective mass m equal to the Debye mass mD and choosing an isotropic
momentum distribution Ωlm = δl0δm0. As a consequence of isotropy the constants BX

i
lm are set

to zero and the constants coupling the momentum distribution to the electrical field are reduced
to the form EX

i
lm = δl1v

i
m. The Vlasov equation in thermal equilibrium is therefore significantly

simplified:
∂tW

a
l′m′ = −(DiWlm)aCil′m′lm + δl1v

i
mE

a
i . (9.34)

Note that this form also applies for a general isotropic medium, where only the effective mass m
in the second equation of (9.32) needs to be reevaluated.
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Figure 9.1: Lattice representation of the chromo magnetic field Bi(x) (highlighted in magenta). The field
is obtained as a sum of all plaquettes (blue) transverse to the orientation of the magnetic field and including
the site x as indicated in the illustration.

9.5 Kinetic Theory on the Lattice

To solve the previously introduced set of equations use will be made of the discretization of the
classical Yang-Mills field equations introduced in the two preceding chapters. The additional fields
W a
lm representing the hard mode distributions are independent of any direction and will therefore

be placed at lattice sites. It is convenient to rescale the fields according to W ↔ agW . By coupling
the classical equation of motion for the electrical field on the lattice to the discretized hard mode
current j the following relation ensues in correspondence to (9.32)

Ėi(x) = 2T aIm Tr


T a

∑

|j|6=i
Uij(x)


+

1
2
(
ji(x) + Ui(x)ji(x+ î)U+

i (x)
)
. (9.35)

Note that the expression has been symmetrized by averaging the current over the beginning and
end of the link x→ x+ î. The hard mode current j at every lattice site is defined via

j0(x) =
m2

2
√
π
W00(x) and ji(x) =

m2

4π
vi∗mW1m(x). (9.36)

where the effective mass appears in lattice units m ↔ am. Since the chromo-magnetic field does
not couple directly to the hard mode current the equation of motion for the links U̇ = iEiUi and
thus the definition for the chromo-electric field remain unchanged. The Gauss constraint takes the
following form upon taking the adjoint charge j0 of hard modes at every lattice site into account
(see figure 7.17):

∑

i

(
Ei(x)− U−i(x)Ei(x− î)U+

−i(x)
)

= j0(x). (9.37)

Using the scaling relations E ↔ a2gE, W ↔ agW , m ↔ am and t ↔ t/a between continuum
quantities and their lattice counterparts, it is straightforward to show that these equations reduce
to the corresponding kinetic equations in the continuum upon taking the limit a → 0. The dis-
cretization of the Vlasov equation (9.6) is also straightforward and complicated only by the term
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Figure 9.2: An alternative scheme for the discretization of the unit sphere of directions v relies an platonic
solids. The scheme fully respects the symmetries of the lattice upon choosing the correct orientation for the
solids.

involving the chromo-magnetic field Bi(x) which vanishes in thermal equilibrium:

Ẇlm = −Cilml′m′
1
2
(
Ui(x)Wl′m′(x+ i)U+

i (x)− U−i(x)Wl′m′(x− i)U+
−i(x)

)
+ (9.38)

+EX
i
lm

1
2
(
Ei(x) + U−i(x)Ei(x− i)U+

−i(x)
)

+ BX
i
lm

1
2
(
Bi(x) + U−i(x)Bi(x− i)U+

−i(x)
)
.

The chromo-magnetic field on the lattice appearing in this equation can be discretized in the
following form which is illustrated in figure 9.1

Ba
i (x) = Im TrT a (Ui,j(x) + Uj,−i(x) + U−i,−j(x) + U−j,i(x)) (9.39)

By using the Baker-Campbell Haussdorff formula to expand plaquettes in the lattice spacing it
is straightforward to show that this expression will reduce to the chromo-magnetic field in the
continuum limit up to a rescaling to lattice units Bi ↔ agBi. There exist different less general
discretization schemes to simulate the Yang-Mills Vlasov equations (9.5,9.6) on the lattice in ther-
mal equilibrium. The problem to discretize the unit sphere of directions S2 for the hard-mode
distribution W (x, v) : R3+1×S2 → R, while respecting the symmetries of the lattice, has also been
solved by replacing S2 with suitably oriented platonic solids [95]. In this scheme every vertex vn of
the platonic solid p at an arbitrary lattice position x is associated with a field W (x,vn). Spherical
integrals are represented as sums over the vertices of the solid with the area Ap = 4π

Np
assigned to

every vertex. Np is the number of vertices of the used solid p. Since there are only 5 platonic solids,
the precision with which the hard modes can be simulated is limited. The approach respects the
symmetries of the lattice upon choosing a suitable orientation for the solid however and facilitates
the implementation of fast kinetic algorithms. The hard mode current takes the following form on
the lattice

jµ(x) =
(amD)2

Np

∑

n

vµnW (x,vn), (9.40)

where the sum runs over all vertices of the platonic solid and vn = (1,vn). The equations of motion
for magnetic and electric fields (9.35) as well as the Gauss constraint (9.37) are formally unchanged.
It is straightforward to derive the appropriate equation of motion for the hard mode distribution
in thermal equilibrium:

∂tWn(x) = vin(Ei(x)− 1
2

[Ui(x)Wn(x+ i)U+
i (x)− U−i(x)Wn(x− i)U+

−i(x)]). (9.41)

To study non-equilibrium situations an expansion in spherical harmonics should be preferred due
to the higher precision with which the unit sphere of directions can be approximated. Independent
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of the chosen discretization scheme it is important to point out that the physics of electric and
magnetic gauge fields remains shaped by discretization artifacts at the hard scale. Quantities
defined at the hard scale are thus shaped by the intricacies of the discretization scheme, and the
hydrodynamics of the lattice system consequently remains inconsistent with continuum physics.
The purpose of the introduction of effective hard mode fields is instead to lessons the impact of
these discretization artifacts on the physics at the soft scale and to introduce the leading order
contributions of hard thermal loops which shape the structure of perturbation theory in thermal
media. In addition, as alluded to in the first section of this chapter, the introduction of hard mode
fields allows to safely take the continuum limit without encountering a divergence in the energy
density.

9.6 Leap-Frog Integrator

For a numerical integration of the kinetic equations on the lattice some care must be taken to ensure
that the update step for a discrete time difference ∆t is symplectic and respects the symmetries
of the equations of motion in continuous time (9.5,9.6). It is particularly important to ensure a
symmetry with respect to parity and time reversal to minimize discretization artifacts and avoid
instabilities. The symmetrization described in this section is used to update the chromo-electric,
-magnetic and hard mode fields on the lattice in the context of a leap-frog scheme. Electric fields
Ei(x) will be defined at half time steps while links Ui(x) and hard mode fields Wlm(x) are defined at
full time steps. The link update remains unchanged with respect to the purely classical simulations:

Ui(x+ ∆t) = exp(i∆tEi(x+
1
2

∆t))Ui(x) (9.42)

The hard mode current ji(x) must be taken into account when updating electric fields and the
corresponding update for the purely classical theory is therefore modified to take the following
form

Ei(x+
1
2

∆t) = Ei(x−
1
2

∆t) + 2∆tT
aIm Tr[T a

∑

|j|6=i
Uij(x)] +

+
1
2

∆t

[
ji(x) + Ui(x)ji(x+ i)U+

i (x)
]
. (9.43)

The Gauss constraint can be expressed in a symmetrized form as:

∑

i

(
Ei(x+

1
2

∆t)− U−i(x)Ei(x− i+
1
2

∆t)U+
−i(x)

)
=

(amD)2

4
√
π

(W00(x) +W00(x+ ∆t)) . (9.44)

A more subtle scheme is required to update hard mode fields while respecting the original symme-
tries of (9.6) with respect to parity and time reversal. The following update scheme is used

Wlm(x+ ∆t) = Wlm(x−∆t) + 2∆t(EX
i
lmEave,i(x) + BX

i
lm

(
Bi(x) + U−i(x)Bi(x− i)U+

−i(x)
)

−1
2
Cilml′m′ [Ui(x)Wl′m′(x+ i, t)U+

i (x)− U−i(x)Wl′m′(x− i)U+
−i(x)]) (9.45)
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where the symmetrized electric field Eave,i is defined as:

Eave,i(x, t) =
1
4

[Ei(x−
1
2

∆t) + U−i(x)Ei(x− i−
1
2

∆t)U+
−i(x)

+Ei(x+
1
2

∆t) + U−i(x)Ei(x− i+
1
2

∆t)U+
−i(x)]. (9.46)

Note that the hard mode fields defined at subsequent time steps are updated independently of each
other and that a potential problem with doublers exists. These doublers are discussed in some
detail in [91].

9.7 Generating the Ensemble in Thermal Equilibrium

To obtain thermal averages of time dependent quantities the problem of generating an ensemble of
field configurations according to the classical partition function Zcl must be solved. In this section a
generalization of the thermalization procedure previously introduced for the purely classical lattice
model is suggested. The partition function for the classical theory supplemented with the effective
hard mode distribution takes the following form in the continuum:

Zcl =
∫

[DA][DE][DW ] δ(DiE
i +

m2
D

2
√
π
W00) e−βHkin . (9.47)

The δ-function restricts the partition function to include only field configurations satisfying Gauss’s
law. The spherical components are constrained by the demand that the momentum distribution is
real

Wl,−m(x) = (−1)mW+
l,m(x) (9.48)

and the integration over the W -fields is therefore defined as an integration over a complete subset
of independent adjoint components of the fields Wlm at each point in space. The Hamiltonian for
kinetic theory was derived in [92] and takes the following form:

Hkin =
∫

d3x Tr
[
−EiEi +

1
2
FijF

ij +
m2
D

4π
WlmWlm

]
. (9.49)

To extend the Monte Carlo techniques for the generation of the partition function to kinetic theory
the Gauss constraint is again reexpressed using the identity

δ(DiE
i +

m2
D

2
√
π
W00) =

∫
[Dϕ] exp

{
iβ
∫

d3xTr
[(
EiDi −

m2
D

2
√
π
W00

)
ϕ

]}
, (9.50)

where ϕ = ϕaT a is an appropriately scaled adjoint scalar field corresponding to the component
A0 of the gauge field. The covariant derivative is again removed from the electrical field in the
exponent by partial integration. The partition function (9.47) can now be rewritten as:

Zcl =
∫

[DA][DE][DW ][Dϕ] exp
{
− β

∫
d3xTr

[1
2
FijF

ij − Ei(Ei + iDiϕ)

+i
m2
D

2
√
π
W00ϕ+

m2
D

4π
WlmWlm

]}
. (9.51)
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Upon performing the Gaussian integrations over the adjoint components of color electric fields as
well as the components of the hard mode distribution the partition function of a Yang-Mills theory
coupled to an adjoint Higgs field is obtained:

Zcl =
∫

[DA][Dϕ] exp
{
−β
∫

d3xTr
[

1
2
FijF

ij − 1
4

DiϕDiϕ+
m2
D

4
φ2

]}
. (9.52)

In contrast to the partition function for the purely classical theory the Higgs field is now massive
with a scalar mass proportional to the Debye mass mD. Upon making the transition to the lattice
the partition function takes the form

ZL =
∫

[DU ][Dϕ] e−βHL , (9.53)

where the lattice Hamiltonian is:

HL =
∑

x


βL

∑

i<j

{
1− 1

N
ReTrUij

}
+
βL
N
Tr

{
φ(x)φ(x)− κ

∑

i

φ(x)Ui(x)φ(x+ î)U+
i (x)

}
 .

(9.54)
The adjoint Higgs ϕ, defined at every lattice site, is expressed in lattice units a2gϕ→ 2

√
κϕ. The

Hamiltonian is formally identical to the one used to represent the partition function for the purely
classical lattice theory. The only practical difference consists in the choice of the hopping parameter
which is now defined as [80, 81]

κ−1 =
am2

D

8
+ 3. (9.55)

The adjoint Higgs again serves an auxiliary field to generate an ensemble of gauge field configura-
tions according to the partition function (9.53). The electrical as well as hard mode fields are drawn
subsequently from Gaussian distributions and projected onto the hypersurface of field configura-
tions satisfying the Gauss constraint. A caveat of the thermalization procedure outlined here is
that the relation between the partition function of the semi-classical theory and Yang-Mills theory
with an adjoint Higgs has been established in the continuum and is not exact for the lattice theory.
It is however again possible to combine this technique with conventional thermalization techniques
[91] which can subsequently be applied to approach the exact equilibrium distribution to arbitrary
precision.
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Figure 9.3: Flow chart illustrating the structure of the kinetic theory simulations in thermal equilibrium.
The general layout is similar to layout of the purely classical simulation introduced in chapter 7.

9.8 Structure of the Simulation for Thermal Equilibrium

The general structure of the classical lattice simulation is shown in figure 9.3. The following parts
of the algorithm require a detailed discussion:

1. Generation of Gauge Fields
To generate an ensemble of link configurations according to (9.53) the overrelaxed heatbath
algorithm for the purely classical theory is used. The hopping parameter is now chosen as:

κ−1 =
am2

D

8
+ 3. (9.56)

2. Generation of Electrical and Hard-Loop Fields
The electrical fields {Ei(x)} as well as Hard-Loop fields {Wlm(x)} can be drawn from a
Gaussian according to (9.53). While the electrical fields are drawn from a Gaussian with
variance σ2

E = 2N/βL, the adjoint components of Hard-Loop fields Wlm are drawn from
Gaussians with variance σ2

m>0 = 4Nπ/am2
DβL for m > 0. The real parts of Wl0 are drawn

from Gaussians with variance σ2
m=0 = 8Nπ/am2

DβL.

3. Initial Time Step of the Leapfrog Integrator
To perform the first step of the leap-frog integrator electrical fields are evolved for 1/2∆t and
hard mode fields subsequently for a full time-step ∆t.

4. Classical Time Evolution
The leap-frog integrator for the purely classical theory has been modified to take the presence
of the effective hard mode fields into account. The properly symmetrized update steps consist
of the set of equations (9.43),(9.45) and (9.42) executed in the order of appearance.



10 Non-Abelian Plasma Instabilities

In any field, find the strangest thing and then explore it.

John Archibald Wheeler

Hydrodynamic simulations have been shown to provide an excellent fit to the experimental data
from heavy-ion collisions at RHIC assuming that a hydrodynamic behavior sets in at a very early
stage of the collision. The necessary rapid establishment of a local thermal equilibrium is puzzling
from a theoretical point of view and resists an explanation by perturbative techniques which yield
significantly larger thermalization times. In QED the rapid formation of a plasma in the presence
of an anisotropic background current is known to be driven by the so called Weibel instability, and
it has been argued by Mrowczinski [56] that analogous non-abelian instabilities might also drive the
formation of a quark-gluon plasma in heavy ion collisions. These instabilities will be investigated
numerically in the following for a strongly anisotropic SU(2) and SU(3) medium.

10.1 Weibel-Instability

This section will serve as an introduction to the Weibel instability in classical electrodynamics to
provide a solid foundation for the discussion of non-abelian plasma instabilities in the rest of this
chapter. The Weibel instability is well known to drive the formation of a plasma in the presence
of an anisotropic background current. The discussion will follow the lines of the original article
by Erich S. Weibel from 1959 [96]. The physical system that will be investigated in the following
consists of freely moving electrons with charge e and mass m which interact via an electromagnetic
field described by the set of homogeneous

Ḃ(x) = −∇×E(x), Ė(x) = ∇×B(x)− j(x) (10.1)

and inhomogeneous Maxwell equations:

∇ ·E(x) = −j0(x), ∇ ·B = 0. (10.2)

The space-time position is denoted as x ∈ R3+1 while j is the 4-current of electrons. The Boltzmann
transport equation for the phase space distribution of electrons f(x,p) takes the following form
neglecting the collision term

∂tf = −v · ∇xf −
e
m

[E + v ×B] · ∇vf̄ , (10.3)

where f̄(p) is the distribution of background charges and vp = (1,p/p) is defined as usual. Note
that the reasoning for omitting the collision term is that since T � e2/r, where r ∼ T−1 is the
average inter-particle spacing, the plasma is rarefied, i.e. collisions can be neglected since the
average energy of a particle is much higher than the potential between two particles [18]. The
4-current j is obtained from the electron distribution f via:

jµ = e
∫

d3p vµf. (10.4)
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The background distribution f̄ is assumed to evolve on time and length scales much larger than
those relevant for the electron distribution and is therefore treated as static and homogeneous.
An example for such a slowly evolving background distribution is the distribution of nuclei in
an ionization plasma. The set of homogeneous Maxwell equations and the Boltzmann equation
combined with Gauss law are the abelian counterpart to the Yang-Mills Vlasov equations as defined
in (9.1). Note that there is no counterpart to ∇×B = 0 in the Yang-Mills Vlasov equations since
this would require a complete gauge fixing. Since the purpose of fixing to a temporal gauge merely
consists in establishing a canonical formalism with electrical fields forming the conjugate momenta
to spatial gauge fields, a complete gauge fixing is not necessary. The aim of the following discussion
is to illustrate the existence of unstable modes in the presence of a non-isotropic background
distribution. As a first step in the derivation of the dispersion relations for the medium a Fourier
transform of the Boltzmann equation with respect to the spatial coordinate is performed

i(ω + k · v)f = − e
mω

{
ωE · ∇vf̄ + [k ×E] · [v ×∇vf̄ ]

}
, (10.5)

where the magnetic field has been eliminated using the homogeneous Maxwell equations. The
anisotropic background distribution is again assumed to have a cylindrical symmetry with respect
to the z-axis

f̄ = f̄(v0, v3), (10.6)

where the radial coordinate v2
0 = v2

1+v2
2 has been introduced. The general solution of the Boltzmann

equation for a cylindrically symmetric system is known and given by the expression:

f(K, v0, v3) = −i
e
mω

v1E1 + v2E2

v0(ω + kv3)

{
kv0

∂f̄

∂v3
− (ω + kv3)

∂f̄

∂v0

}
. (10.7)

Using the inhomogeneous Maxwell equations Faradays law of induction is rewritten as

(ω2 − k2)E = kj0 − ωj. (10.8)

The electrical field can now be eliminated from (10.7) by summing over the x- and y- components
of this relation to obtain the general dispersion relation:

k2 − ω2 =
e2

m
π

∫ ∞

0
dv0

∫ ∞

−∞
dv3

v2
0

ω + kv3

{
(ω + kv3)

∂f̄

∂v0
− kv0

∂f̄

∂v3

}
(10.9)

To illustrate the appearance of unstable modes a more specific form of the background distribution
is assumed

f̄(v) =
n

u2
0u3(2π)

3
2

exp
[
− v2

0

2u2
0

− v2
3

2u2
3

]
(10.10)

where the parameters ui are arbitrary. The dispersion relation for this medium takes the form

k2 − ω2 =
ne2

m

{
c−

(
[c+ 1]

ω

u3k

)
ϕ

(
ω

u3k

)}
(10.11)

where

c =
(
u0

u3

)2

− 1 and ϕ(z) = exp(−1
2
z2)
∫ z

−i∞
dξ exp(

1
2
ξ2). (10.12)
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Rapid thermalisation and Weibel instability
What turns the very non-thermal hard mode distribution to ∼ thermal
plasma so quickly?

Perturbative scattering processes are much too slow [Baier, Mueller, Schiff,

Son; Bödeker]

Plasma instabilities can be much more efficient: these are well-known
in electromagnetic plasmas, where anisotropic distribution of current
(electrons) leads to Weibel (filamentary) instability:

I

B

⇒ Exponential growth of soft magnetic fields; psoft # pelectron. In QED
the growth rate can be solved analytically as a function of the
anisotropy.

⇒ When magnetic field amplitude is large, gAsoft ∼ kelectron, field bends
electrons strongly → isotropisation, thermalisation?

Heavy ion collisions too? [Mrówczyński; Arnold, Lenaghan, Moore; Strickland]

Figure 10.1: Illustration of the Weibel instability. The anisotropic background distribution induces a
magnetic field in the transverse plane which causes a filamentation of the electron current. This filamentation
in turn increases the magnetic field leading to a self-energizing process.

In the limit where ω/u3k is large the dispersion relation has a solution of the form

ω ' iu0

(
ne2

m

)
k√(

ne2

m

)2
+ k2

(10.13)

which is purely imaginary. The existence of imaginary solutions for ω with appropriate sign indicate
the presence of exponentially growing plasma modes upon performing the Fourier transform back to
a space-time representation. The presence of an anisotropic background distribution will therefore
lead to a rapid growth of magnetic and electric energy densities. The associated physical process
is illustrated in the upper part of figure 10.1. The anisotropic background distribution induces a
magnetic field in the transverse plane which causes initial inhomogenities of the electron current. A
filamentation ensues which increases magnetic fields in the transverse plane as illustrated in figure
10.1 leading to further filamentation. The effect of this mechanism is a self-energizing process which
leads to a rapid growth of the energy density of the magnetic field as well as the induction of an
electric field along the direction of the symmetry axis. The filamentation of the electron current
has been verified experimentally in high intensity laser experiments [97].

10.2 Non-Abelian Instability and Plasma Formation

To illustrate that the results derived in the previous section for QED in the classical limit are of
relevance to the kinetics of QCD encountered in heavy-ion collisions, it is instructive to focus on
the initial phase of plasma formation. For magnetic and electric fields of low intensity the Yang-
Mills equations in a temporal gauge can be expanded in the set of fields {Aai , Eai } to arrive at the
following field equations:

∂tE
a(x) = ∇×Ba(x)− ja(x)

∂tB
a(x) = −∇×Ea(x),

∇ ·Ea(x) = −(j0)a(x). (10.14)

The classical Yang-Mills field equations are therefore identical to a set of Maxwell equations for
N2 − 1 independent electromagnetic fields . A similar observation is made for the Vlasov equation
for the distribution of hard plasma modes

∂tf
a = −v · ∇xfa + g(Ea + v ×Ba) · ∇pf (10.15)
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Figure 10.2: Growth rate of the electric and magnetic energy densities in the presence of an anisotropic
background distribution for SU(2) as obtained by Rummukainen and Bödecker [99].

which is identical to its abelian counterpart with the quotient −e/m replaced by the gauge coupling
g. The adjoint components of the Yang-Mills fields as well as the corresponding components of the
hard mode distribution are therefore fully decoupled for weak fields and evolve according to the
same set of equations that applies for a QED plasma. The analysis from the previous section can
therefore also be applied to QCD at weak fields. It is therefore expected from a classical analysis
that an anisotropic hard mode background, as it is present in heavy-ion collision will induce a
rapid field growth in the initial phase of the collision. The difference to the QED case is, however,
that as soon as the fields have grown to a sufficient strength, the non-linear terms, representing
the gluon self-interaction, become relevant. At this point the analysis from the previous section is
compromised which is of particular importance, since only at sufficiently high occupation numbers
a classical analysis can be expected to capture the physics of the full quantum theory correctly. It is
precisely at this point, where the classical picture of the Weibel instability, discussed in the previous
section, breaks down. Several studies were performed to investigate the fate of the Weibel instability
in the non-abelian regime. The initial results for a 3-dimensional system were disappointing [98]
and indicate that the field growth is curbed in the non-abelian regime and the initially exponential
growth rates of energy densities become increasingly damped. The existence of a second phase
of field growth was observed as well with energy densities showing a sudden exponential growth
deep in the non-abelian regime. The nature of this secondary instability remains ill understood
and numerous explanations have been put forward. Recent studies for SU(2) [99, 100] have shown
that for extremely anisotropic background distributions a strong and sustained field growth occurs
in the non-abelian regime shortly after the initial field growth caused by the Weibel instability has
abated. It is the purpose of the study presented in the following to investigate this phenomenon in
the context of the kinetic framework introduced in the previous section for a maximally anisotropic
system. The gauge groups SU(2) and SU(3) will be studied.
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10.3 Simulation of the Non-Abelian Plasma Instability

To simulate the Chromo-Weibel instability for an extremely anisotropic background distribution
in the context of the semi-classical framework introduced in the previous chapter the constants
EX

i
lm and BX

i
lm entering the Vlasov equation (9.38) must be determined. In addition, suitable

initial conditions to simulate the onset of the instability must be chosen. The set of constants
{EXi

lm,
BX

i
lm} is determined from the angular distribution

Ω =
1
m2

M, M = 4πg2

∫ ∞

0

dp p2

(2π)3

f̄(pvp)
p

(10.16)

which parametrizes the hadronic background distribution. The effective mass which normalizes the
distribution M is defined as:

m2 =
∫

dΩv M. (10.17)

In thermal equilibrium the effective mass corresponds to the Debye mass mD. The background
distribution f̄(p) which will be assumed in the following is the anisotropic bosonic distribution
which has been introduced in chapter 5 in the limit of maximal anisotropy ξ →∞

f̄(p) = lim
ξ→∞

√
1 + ξnB(p

√
1 + ξ(vp · n)2) = δ(vp · n)h(p) (10.18)

where

h(p) =
∫ ∞

−∞
dx nB(p

√
1 + x2). (10.19)

The anisotropy vector n is chosen to coincide with the unit vector in the z-direction as usual. The
normalized angular distribution Ω and the effective mass therefore take the form:

Ω =
1

2π
δ(vp · n) and m2 =

π2

6
g2T 2. (10.20)

Starting with the constants EX
i
lm relevant for the electrical component of the Vlasov equation

(9.38) the following integral (9.33) must be evaluated:

EX
i
lm =

1
2π

∫
dΩvY

∗
lm(v)

(
− ∂

∂vi
+ 2vi

)
δ(v3)

∣∣∣
v=1

. (10.21)

Using the definition of the spherical harmonics

Ylm(ϑ, φ) = Nlme
imϕPml (cos θ), Nlm =

√
(2l + 1)(l −m)!

4π(l +m)!
(10.22)

from the associated Legendre polynomials Pml as well as the identity

d
dx
Pml (x) =

−(l + 1)xPml (x) + (1 + l −m)Pml+1(x)
−1 + x2

(10.23)
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it is straightforward to obtain an explicit expression for the constants:

EX lm = Nlmδ|m|1P
m
l (0)




1
−i sgn(m)

0


−Nlmδm0(l + 1)P 0

l+1(0)




0
0
1


 . (10.24)

The calculation of the corresponding constant BX
i
lm is performed along analogous lines. From

(9.33) the following integral needs to be determined:

BX
i
lm =

1
2π
εijk

∫
dΩv Y

∗
lm(v)vj

∂

∂vk
δ(v3)

∣∣∣
v=1

= −1
2
εij3δ|m|1 (δj1 − i sgn(m)δj2)Nlm

∂

∂v3
Pml (v3 = 0) (10.25)

The derivative of the Legendre polynomial is again obtained using the identity (10.23) which leads
to the following final expression for the constants:

BX lm = −1
2
Nlmδ|m|1(1 + l −m)Pml+1(0)




i sgn(m)
1
0


 (10.26)

It is evident that the constants vanish for i = 3 and that the hard modes therefore couple only to
magnetic fields in the transverse plane as expected. Note that the set of indices {l,m}, |m| ≤ l is
restricted to a finite subset by introducing a spherical cutoff lmax � 1 for practical applications
with the set of indices contained in the subset satisfying l ≤ lmax. Initial field configurations for the
classical time evolution are generated by formally assuming the classical system to be in a thermal
equilibrium at very low temperature at the initial time and employing the Monte-Carlo techniques
discussed in the preceeding chapter. Note that the purpose of this procedure is merely to generate
small initial field fluctuations respecting the Gauss constraint. These fluctuations are required for
a non-trivial time evolution of the system.

10.4 Physical Result

The time trajectories for electric and magnetic energy densities,

EE =
1

6N
Tr〈EiEi〉 and EB = 1− 1

N
Re Tr

∑

ij

〈Uij〉 (10.27)

are shown in figure 10.3 for SU(2) and SU(3) at three different values of the effective mass . All
results were obtained on lattices with volume (20a)3 and spherical cutoff lmax = 16. A further
increase of the spherical cutoff does not alter the observed growth rates significantly. It is observed
however that the duration of the intermittent lapse in growth rates is reduced upon increasing
lmax = 16. An increase in the lattice volume is desirable, even though no qualitative change in
the result can be expected. The results confirm previous observations that the exponential growth
of energy densities in the presence of a strongly anisotropic hadronic background distribution
continues into the strong field regime. As illustrated in figure 10.3, an unabated growth of energy
densities is observed in the limit of asymptotically strong anisotropy with initial growth rates
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Figure 10.3: Left: Growth rates of the electric (blue) and magnetic (red) energy densities at extreme
anisotropy for SU(2) obtained on lattices with volume (20a)3 and spherical cutoff lmax = 16. Right: The
growth rates for SU(3) using a similar lattice layout are in astonishing agreement with the rates for SU(2)
for identical effective masses m.

associated with the Weibel instability at weak fields continuing deep into the non-abelian regime.
The measurements presented here are the first time that plasma instabilities for SU(3) investigated
in the full framework of kinetic theory. An astonishing agreement between the growth rates for
SU(2) and SU(3) is observed at identical effective masses. After the initial exponential growth
phase the accretion of energy is curbed with the magnetic energy density approaching a limiting
value and the electric energy density growing at a significantly reduced rate. The magnetic energy
on the lattice is bounded due to the compact nature of the plaquettes entering the corresponding
expression, and the growth of energy densities is stopped once this limiting value is approached. The
abating growth of energy densities after the initial exponential growth phase is therefore a lattice
artifact. Expectations that non-abelian plasma instabilities serve as a possible explanation for the
conjectured rapid formation of a quark-gluon plasma in the presence of a sufficiently anisotropic
hadronic background are confirmed.





11 Summary

Man cannot discover new oceans unless he has the courage
to lose sight of the shore.

Andre Gide

The research presented in this thesis is now briefly summarized and discussed. Due to the multitude
of different topics and techniques touched upon in the course of this thesis the results are presented
in the form of an enumeration. For a more in depth discussion the reader is referred to the respective
chapters of this thesis. The description of each topic is concluded by a listing of the corresponding
publications and suggestions for additional research.
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Figure 5: The physical dilepton production rate, Eq. (2.3), from charmonium (left) and

bottomonium (right), as a function of the energy, for various temperatures. The mass M

corresponds to the pole mass, and is subject to uncertainties of several hundred MeV; we use

the intervals 1.5...2.0 GeV and 4.5...5.0 GeV to illustrate the magnitude of the corresponding

error bands. The low mass corresponds to the upper edge of each error band.

7. Conclusions

The purpose of this paper has been to experiment, as generally as possible, with the resummed

perturbative framework that was introduced in refs. [24, 25], in order to offer one more handle

on the properties of heavy quarkonium in hot QCD, thus supplementing the traditional

approaches based on potential models and on lattice QCD.

The key ingredient of our approach is a careful definition of a finite-temperature real-time

static potential that can be inserted into a Schrödinger equation obeyed by certain heavy

quarkonium Green’s functions. The potential in question, denoted by limt→∞ V>(t, r), has

both a real and an imaginary part (cf. Eq. (2.6)). An important conceptual consequence

from the existence of an imaginary part is that heavy quarkonium should not be thought of

as a stationary state at high temperatures, but as a short-lived transient, with the quark and

antiquark binding together only for a brief moment before unattaching again.

On the more technical level we have noted that, in terms of Eq. (4.17), the vector channel

spectral function gets a contribution only from the S-wave, l = 0, while the scalar channel

spectral function gets a contribution both from the S-wave and P-wave, l = 0, 1. Here we

differ from the potential model analysis in ref. [8] where, as far as we can see, only l = 1

22

Figure 11.1: Left: Spectral function for bottomonium at rest(mb = 4.5 GeV) obtained from a numerical
solution of the Schrödinger equation (4.4) using the Real-Time Static Potential [37]. Right: The expected
quarkonium peak in the µ−µ+-emission spectrum from dissociation of quarkonium in the vector channel
[38].

Real-Time Static Potential (Chapters 4,5,8) The Schrödinger equation describing quarkonia,
i.e. the bound state of a charm or bottom quark with its anti-particle, in the vacuum is extended to
generic media and used as the defining relation for a thermal quarkonium potential. The real-time
static potential, an analogue to the QCD static potential for generic media, is obtained in the limit
of infinite time and quark mass. This is the first time that an equivalent to the binding energy
in the vacuum is suggested for thermal media which is rigorously defined from first principles.
The real-time static potential consists of a real part which parametrizes the binding energy of the
quarkonium state as well as an imaginary part parametrizing the decay width of the corresponding
resonance. The potential is calculated to leading order in hard-thermal loop improved perturbation
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Figure 11.2: Real (left) and imaginary (right) part of the static potential. The blue curve corresponds to
the isotropic plasma, ξ = 0, the other curves to ξ = 1 with normalization factor N(ξ) = 1 (orange) and
N(ξ) =

√
1 + ξ (red). The potential is evaluated for θr = π

2 (solid) and θr = 0 (dashed).

theory, where both components can be related directly to the retarded and symmetric components
of the thermal gluon propagator. A direct relation to the quarkonium spectral function and thus
the physical resonance as visible in the dilepton spectrum is established as illustrated in figure 11.1.
Suggested Research: The real-time static potential for a qq̄-singlet, as presented here, is supple-
mented by a calculation of the corresponding potential for a qq̄-pair transforming in the adjoint
representation in the context of ongoing research. A calculation of the real-time static potential to
second order in resummed perturbation theory is warranted.
Publications: JHEP 0703, 054 (2007), JHEP 0709, 066 (2007), PoS LAT2007 230 (2007), PoS
CONFINEMENT8 (2008) 118

Anisotropic Media (Chapters 5,10) A plasma with an anisotropy imposed on the momentum
distribution of the system is considered and the real time static potential for quarkonia studied. The
distribution function is normalized so as to preserve the particle number in an ideal gas as required
in the Schwinger-Keldysh formalism. Contrary to recent findings without this normalization, a
weak anisotropy does not lead to an increase in the melting temperature for bound states. The
real time static potential obtained at weak anisotropy for different normalizations is shown in
figure 11.2. To test for the maximal effect, the gluonic medium is also investigated in the limit
of an asymptotically strong anisotropy. The spectral function of quarkonium is calculated for this
case and found to be in remarkable qualitative agreement with the corresponding results for an
isotropic medium. It is important to point out that these findings should also apply to other
calculations where the normalization prefactor has been omitted. The results suggest that heavy
quark observables in anisotropic media are difficult to distinguish from their counterparts in an
isotropic medium. The case of asymptotically strong anisotropy is also considered in chapter 10,
where the non-abelian plasma instabilities arising in such a medium are investigated in hard-loop
improved lattice simulations.
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Figure 11.3: Left: The temperature dependence of the singlet free energy for Nτ = 10. The screening mass,
obtained by fitting the free energy against an exponential, depends linearly on the temperature. Right: The
Nτ dependence of the result is shown for T = 2.25Tc. The free energy vanishes increasingly for finite r due
to the diverging self energy of Wilson lines.

Suggested Research: Quantities calculated for anisotropic media, where the normalization prefactor
has been omitted should be reconsidered. An attempt could be made to calculate the real-time
static potential for arbitrary values of the anisotropy parameter.
Publications: arXiv:0908.1746 [hep-ph]

Monte Carlo Techniques (Chapters 6,7,9) An overview of Monte Carlo techniques for pure
gauge theory is given in chapter 6, followed by a measurement of the singlet free energy of a static
qq̄-pair for Yang-Mills theory with gauge group SU(3) in 3 dimensions. The results are illustrated
in figure ?? and supplemented by a brief lattice analysis of the Green-Karsch effective theory for
SU(2) which serves as a naive toy model to capture many aspects of the thermal physics encountered
in full Yang-Mills theory on coarse lattices. Monte-Carlo techniques are revisited in the context
of classical and hard-loop improved lattice simulations, where they serve to generate a thermal
ensemble of initial field configurations for a classical time evolution.
Note: The presented numerical analysis of the Green-Karsch effective theory as well as the mea-
surement of singlet and adjoint components of the free energy in full Yang-Mills theory are part of
ongoing research projects.

Classical Lattice Simulations and Non-Perturbative Corrections to Heavy Quark Ob-
servables (Chapters 7,8,9,10) Several chapters of this thesis are devoted to the development and
analysis of a classical lattice model which captures the dynamics of soft gauge fields in a Yang-Mills
plasma. The duality between the partition function of classical Yang-Mills theory and a euclidean
Yang-Mills theory coupled to an adjoint Higgs is used to develop an efficient Monte-Carlo method
for the generation of an ensemble of initial field configurations for the classical time evolution. The
method virtually eliminates the spurious thermalization times plaguing conventional techniques.
The technique is used to study the observed rapid thermalization of heavy quarks in the quark-
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Figure 11.4: Time-dependence of the imaginary part of V (t, r) as obtained from lattice-regularized pertur-
bation theory and classical simulations.

gluon plasma. Non-perturbative effects due to the dynamics of soft classical fields are found to lead
to a significant enhancement of the momentum diffusion of heavy quarks. It is shown that a reliable
measurement of the diffusion constant in ordinary lattice simulations is feasible. The break-down
of the classical lattice model in the strong coupling regime is analyzed in detail. Non-perturbative
corrections to the imaginary of the real-time static potential due to classical field dynamics are
measured and found to amplify the perturbative result by nearly 100%. The qualitative agreement
between lattice regularized perturbation theory and results from the classical lattice simulations is
illustrated in figure 11.4.
Suggested Research: Additional research is required to distinguish unphysical effects leading to a
breakdown from genuine soft field dynamics at intermediate temperatures. The heavy quark diffu-
sion constant should be measured in ordinary lattice simulations.
Publications: JHEP 0709, 066 (2007), PoS LAT2007 230 (2007), PoS CONFINEMENT8
(2008) 118, JHEP 0905, 014 (2009)

Kinetic Theory and Non-Abelian Plasma Instabilities (Chapters 9,10) The classical lat-
tice model is supplemented by leading order quantum corrections as obtained in hard-loop effective
theory. Monte-Carlo techniques, developed to generate a thermal ensemble of field configurations
for the purely classical lattice model, are extended to kinetic theory. The equations of motion in
the presence of a generic hard mode background are derived. An illustration of the simulation tech-
nique is provided by a numerical analysis of non-abelian plasma instabilities. These instabilities
have been suggested as a mechanism, analogous to the Weibel instability in QED, for the rapid
plasma formation in heavy ion collisions. Initial investigations indicated that an anisotropic hard
mode background leads to a rapid energy growth in the weak field regime which is curbed in the
non-abelian regime ruling out this scenario for plasma formation. Recent research has shown, how-
ever, that the growth of energy densities continues deep into the non-abelian regime for sufficiently
anisotropic backgrounds. These findings are supported by the results presented in this thesis for an
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Figure 11.5: Left: Growth rates of the electric (blue) and magnetic (red) energy densities at extreme
anisotropy for SU(2) obtained on lattices with volume (20a)3 and spherical cutoff lmax = 16. Right: The
growth rates for SU(3) using a similar lattice layout are in astonishing agreement with the rates for SU(2)
for identical effective masses m.

asymptotically strong anisotropy of the background distribution. An unabated exponential growth
of energy densities is observed which is only limited by the bounded magnetic energy density on
the lattice due to the compact nature of plaquettes as shown in figure 11.5. Non-abelian plasma
instabilities are investigated the first time for SU(3) in the full framework of kinetic theory. An as-
tonishing agreement between the growth rates of energy densities for SU(2) and SU(3) is observed.
Note: The results presented for the non-abelian plasma instabilities are part of ongoing research.
Suggested Research: The general framework developed in chapter 9 could, for instance, be used to
study the plasma formation in non-central collisions. Additional theoretical and numerical work is
required to reproduce continuum hydrodynamics on the lattice in a kinetic theory framework.





A Notation and Conventions

A.1 Notation

A.1.1 Euclidean and Minkowski Space Notation

Employing the usual Minkowski space notation covariant or contravariant space-time indices are
written in greek letters while spatial indices will be indicated by latin letters. The sign convention
for the metric is:

gµν =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 . (A.1)

The Lorentz indices 0 and 4 denote the temporal component in a Minkowskian and Euclidean
context respectively. In general a d+ 1 dimensional Minkowski space is denoted as Rd,1 while the
corresponding euclidean space is Rd+1. 4-momenta are denoted by a captial letter in Minkowski
space, i.e. K = (ω,k). Spatial momenta are generally indicated by a bold print while the absolute
size of the spatial momentum is shown in a normal print k = |k|.

A.1.2 Einstein Convention

The usual summation convention according to Einstein is used implying a summation over co- and
contravariant indices denoted by the same letter and appearing in the same product. Euclidean,
color as well as Schwinger-Keldysh contour indices are summed over if they appear repeatedly in a
product unless explicitly indicated otherwise.

A.1.3 Abbreviations

The use of abbreviations has been avoided to improve readability. A few standard acronyms have
been used nevertheless and are listed here in an alphabetical order for convenience:

• AdS: Anti de Sitter
• BNL: Brookhaven National Laboratory
• CERN: European Organization for Nuclear Research
• CFT: Conformal Field Theory
• FAIR: Facility for Antiprotons and Ions Research
• HTL: Hard Thermal Loop
• KMS: Kubo-Martin-Schwinger
• LHC: Large Hadron Collider
• QCD: Quantum Chromodynamics
• QED: Quantum Electrodynamics
• QFT: Quantum Field Theory
• RHIC: Relativistic Heavy Ion Collider
• SPS: Super Proton Synchrotron
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A.2 Special Matrices

A.2.1 Pauli Matrices

The Pauli matrices represent the generators for SU(2). In a lattice context these matrices need to
be multiplied with 1/

√
2 to take the normalization Tr T aT b = 1/2δab into account.

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A.2)

A.2.2 Gell-Mann Matrices

The Gell-Mann matrices represent the generators for SU(3). Just like the Pauli matrices they need
to be multiplied with 1/

√
2 in a lattice contextto take the normalization Tr T aT b = 1/2δab into

account.

λ1 =




0 1 0
1 0 0
0 0 0


 , λ2 =




0 −i 0
i 0 0
0 0 0


 , λ3 =




1 0 0
0 −1 0
0 0 0


 ,

λ4 =




0 0 1
0 0 0
1 0 0


 , λ5 =




0 0 −i
0 0 0
i 0 0


 , λ6 =




0 0 0
0 0 1
0 1 0


 ,

λ7 =




0 0 0
0 0 −i
0 i 0


 and λ8 =

1√
3




1 0 0
0 1 0
0 0 −2


 . (A.3)

A.2.3 γ- Matrices

The γ- matrices are conveniently defined from the Pauli matrices and take the form

γµ =
(

0 σµ

σµ 0

)
, γ5 =

(
−1 0
0 1

)
. (A.4)

where σµ = (1,σ), σµ = (1,−σ) and 1 denotes a 2× 2 unit matrix.

A.3 Lattice Notation

Gauge Fields and Plaquettes:

Uµ(x) = Wx→x+µ̂ = eigaÃµ(x) and Uµν(x) = Uµ(x)Uν(x+ µ̂)U+
µ (x+ ν̂)U+

ν (x). (A.5)

Electrical and Magnetic Fields on a Hamiltonian Lattice:

U̇i(x, t) = iEi(x, t)Ui(x, t) and Ba
i (x) = Im TrT a (Ui,j(x) + Uj,−i(x) + U−i,−j(x) + U−j,i(x)) .

(A.6)
Scaling Conventions:

a2gEi ↔ Ei, agBi ↔ Bi, agW ↔W, and
t

a
→ t. (A.7)



B Schwinger-Keldysh Formalism

In this chapter the Schwinger-Keldysh notation and Feynman rules for Yang-Mills theory are sum-
marized. Self-energies and resummed propagators for the special cases of thermal equilibrium and
an anisotropic medium are listed.

B.1 Real-Time Correlators

Let ϕ̂(t), ψ(t′) be two operators, which are local in time and contained in the Schwinger-Keldysh
contour ζ. The real-time correlator for these operators is defined as:

iG = i
(
G11 G12

G21 G22

)
=
(
〈Tψ̂(t′)ϕ̂(t)〉 −〈ϕ̂(t)ψ̂(t′)〉
〈ψ̂(t′)ϕ̂(t)〉 〈T̃ψ̂(t′)ϕ̂(t)〉

)
. (B.1)

Individual components are related via the following constraint which follows from their definition:

G11 +G22 = G12 +G21. (B.2)

B.1.1 Retarded, Advanced and Symmetric Components

The constraint (B.2) is explicitly accounted for in a basis of retarded (R), advanced (A) and
symmetric (S) components

G′ = R−1 ·G ·R =
(

0 GA
GR GS

)
. (B.3)

with the following transformation matrix mediating between both representation:

R =
1√
2

(
1 1
−1 1

)
and R−1 =

1√
2

(
1 −1
1 1

)
. (B.4)

Self-energies transform via:

Π′ = R−1 ·Π ·R =
(

ΠS ΠR

ΠA 0

)
. (B.5)

B.1.2 Homogeneous Systems

In a homgeneous system where the statistical operator is independent of space-time the correla-
tor G(x, x′) of two local operators ϕ̂(x) and ψ̂(x′) depends only on the separation between both
positions G = G(x− x′). A momentum space representation of the correlator is defined via:

G(K) =
∫

dd+1xeiKµxµG(x), G(x) =
∫

dd+1K

(2π)d+1
e−iKµxµG(K) (B.6)

These real-time correlators obey an additional contraint which reduces the number of independent
correlator components to two:

GA(K) = G∗R(K). (B.7)
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In the special case of thermal equilibrium there is only one independent component of the correlator
due to the Kubo-Martin-Schwinger condition:

G12(K) = e−βωG21(K). (B.8)

For a free gas of scalar bosons, characterized by a momentum distribution f(p), the following
propagator is obtained in a homogeneous system

G(P ) = Gvac(P ) +Gmed(P ), (B.9)

where the vacuum component is defined as

Gvac(P ) =

(
1

ω2−π(p)+iε
0

0 −1
ω2−π(p)−iε

)
− 2πiδ(ω2 − π(p))

(
0 Θ(−ω)

Θ(ω) 0

)
(B.10)

while the in-medium component is:

Gmed(P ) = −2πiδ(ω2 − π(p))f(p)
(

1 1
1 1

)
. (B.11)

B.2 Yang-Mills Theory

B.2.1 Feynman Rules

The basic building blocks for a naive diagramatic expansion of Yang-Mills theory in a medium
characterized by the (gluonic) momentum distribtion f(p) are listed in the following.

1. Gluon Propagator
The bare gluon propagator Gab

µν in a general covariant gauge with gauge parameter λ takes
the following form [24]

iGab
µν(K) = δab

{[
gµν + (λ− 1)

KµKν

K2

]
Gvac − PTµνGmed

}
, (B.12)

using the components of the bare scalar boson propagator. PT is the transverse projector.

2. Ghost Propagator
The propagator for each component of the ghost field is identical to the scalar boson propa-
gator (3.22) at vanishing temperature,

Sab = −iδabGvac, (B.13)

since ghost particles can not be interpreted as physical plasma constituents.

3. Interaction Vertices
The 3- and 4-vertices for the gluon self interaction as well as the ghost-gluon vertex are
identical to their vacuum counterparts [18] on the forward part of the contour. Type 2
vertices differ by an opposite sign.

To calculate an amplitude in momentum space all topologically different diagrams are drawn and a
summation is performed over all possible combinations of type 1 and 2 vertices which are joined by
the appropriate entries of the bare real time propagators. Momentum conservation is imposed at
every vertex and an integration is performed over the remaining unconstrained momenta appearing
in the propagators.
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B.2.2 Schwinger-Dyson Relations

The Schwinger Dyson relation for the resummed two point function G̃ takes the following form in
momentum space

G̃ = G+G ·Π · G̃, (B.14)

where Π is the self energy resumming one particle irreducible interactions and G the bare propa-
gator. The bold print indicates matrices with respect to Schwinger-Keldysh indices. In a basis of
retarded, advanced and symmetric components the following set of Schwinger-Dyson equations for
the resummed two-point function ensues:

G̃R,A = GR,A +GR,A ·ΠR,A · G̃R,A,

G̃S = GS +GR ·ΠR · G̃S +GS ·ΠA · G̃A +GR ·ΠS · G̃A . (B.15)

B.2.3 Thermal Equilibrium

The retarded gluon propagator to first loop order has the following form in thermal equilibrium

GµνR (K) =
1

K2 −ΠT
PµνT +

1
K2 −ΠL

PµνL −
λ

K4
KµKν (B.16)

where the projectors on longitudinal and transverse components are defined via:

P 00
T = P 0i

T = 0, P ijT = δij −
KiKj

k2
, and PµνL = −gµν +

KµKν

K2
− PµνT . (B.17)

The retarded self energy has been decomposed into longitudinal and transverse components

ΠR = PLΠL + PTΠT (B.18)

which take the following form for soft external momenta K � T

ΠL = m2
D

[
1− ω2

k2

] [
1− ω

2k
log

ω + k

ω − k

]
, ΠT =

m2
D

2
ω2

k2

[
1− ω2 − k2

2ωk
log

ω + k

ω − k

]
. (B.19)

Note that the physical branch of the logarithm is Im log(ω + k)/(ω − k) = −πΘ(k2 − ω2). Other
components of the resummed gluon propagator as well as self energy are conveniently obtained via
the Kubo-Martin-Schwinger condition as well as G̃R = G̃∗A.

B.2.4 Anisotropic Media

Anisotropic media are characterized by a momentum distribution of gluons of the form

f(k, ξ) = N(ξ) fiso

(√
k2 + ξ(k · n)2

)
, (B.20)

where n is the anisotropy vector, ξ the strength of the anisotropy and N(ξ) a normalization factor
which is chosen as N(ξ = 0) =

√
1 + ξ to keep the particle density independent of ξ. The resummed

retarded gluon propagator in a covariant gauge takes the following general form in an anisotropic
medium:

G̃µνR (K) = ∆A[Aµν − Cµν ] + ∆G

[
(K2 − α− γ)

ω4

K4
Bµν + (ω2 − β)Cµν + δ

ω2

K2
Dµν

]
− λ

K4
KµKν .

(B.21)
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The structure function α(K)− δ(K) are obtained by decomposing the retarded self-energy into the
following components

Πµν
R (K) = αAµν + βBµν + γCµν + δDµν = g2

∫
d3p

(2π)3
vµp
∂f(p)
∂P β

(
gνβ − vνKβ

K · v + iε

)
. (B.22)

The tensor basis employed for the expansion of the gluon propagator and self energy has the follow-
ing general form for an anisotropic medium characterized by a plasma velocity m and anisotropy
vector n:

Aµν = −gµν +
KµKν

K2
+
m̃µm̃ν

m̃2

Bµν = − K2

(m ·K)2

m̃µm̃ν

Cµν =
m̃2K2

m̃2K2 + (n ·K)2

[
ñµñν − m̃ · ñ

m̃2
(m̃µñν + m̃ν ñµ) +

(m̃ · ñ)2

m̃4
m̃µm̃ν

]

Dµν =
K2

m ·K

[
2
m̃ · ñ
m̃2

m̃µm̃ν − (ñµm̃ν + m̃µñν)
]

(B.23)

Here x̃ is defined as
x̃µ = xµ − x ·K

K2
Kµ. (B.24)

Note that the direction of the anisotropy affects only the tensors C and D. For a plasma at rest the
plasma velocity has the form m = (1, 0, 0, 0). The components A and B correspond to the transverse
and longitudinal projectors up to a rescaling of the longitudinal projector. Other components of
the resummed gluon propagator can be obtained using GR = G∗A, the Schwinger-Dyson relations
and the symmetric self energy:

iΠµν
S = 8πg2N

1
k

∫
d3p

(2π)3
vµp v

ν
pf(p)(1 + f(p+ k))δ(vp · vk) . (B.25)



C Classical and Kinetic Theory

C.1 Classical Theory

C.1.1 Continuum

The statistical partition function for classical Yang-Mills theory is

Zcl =
∫

[DA][DE]δ(DiE
i)e−βHYM , HYM = −

∫
ddxTr

{
EiE

i +
1
2
FijF

ij

}
(C.1)

with the following Euler-Lagrange equations describing the time evolution of individual field con-
figurations [jµ = 0 in the purely classical theory]:

∂tB = −∇×E (Faraday’s law of induction) (C.2)
∂tE = D×B− j (Ampere’s circuital law) (C.3)

D ·E = j0 (Gauss’s law) (C.4)

Electric and magnetic fields are defined via:

Ei = −F0i and Bi =
1
2
εijkFjk. (C.5)

The classical partition function is dual to a Yang-Mills theory coupled to a massless adjoint Higgs:

Zcl =
∫

[DA][Dϕ] exp
{
−β
∫

ddxTr
[

1
2
FijF

ij − 1
4

DiϕDiϕ

]}
. (C.6)

C.1.2 Lattice

On a Hamiltonian lattice the partition function for classical Yang-Mills theory is

ZL =
∫

[DU ]
∫

[DE] δ(G) e−βHL . (C.7)

where the Hamiltonian HL of the lattice model is chosen to take the form

HL(t) =
∑

x



a

3TrEi(x, t)Ei(x, t) + βL
∑

i<j

{
1− 1

N
Re TrUij(x, t)

}
 . (C.8)

and βL = 2N/ag2. The Euler Lagrange equations of motion are

U̇i(x, t) = iEi(x, t)Ui(x, t) (Faraday’s law of induction) (C.9)

Ėai (x, t) = 2
∑

|j|6=i
Im Tr {T aUij(x, t)} (Ampere’s circuital law) (C.10)

where the first relation is used as a definition for the color electric field on the lattice and a Gauss
constraint needs to be satisfied by all field configurations of the ensemble:

∑

i

{
Ei(x, t)− U−i(x, t)Ei(x− î, t)U+

−i(x, t)
}

= 0. (C.11)
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By equating the Debye masses in the continuum and on the lattice

m2
D =

N

3
g2T 2, m2

D,L =
NΣ
2π

g2T

a
, (C.12)

where Σ = 3.175911536 . . ., the lattice spacing is identified as

a =
3
2

Σ
πT

. (C.13)

The discretized partition function for the Yang-Mills theory coupled to an adjoint Higgs takes the
form

ZL =
∫

[DU ][Dϕ] e−βHL (C.14)

where the lattice Hamiltonian is chosen as

HL =
∑

x


βL

∑

i<j

{
1− 1

N
Re TrUij

}
+
βL
N

Tr

{
φ(x)φ(x)− κ

∑

i

φ(x)Ui(x)φ(x+ î)U+
i (x)

}
 ,

(C.15)
using the rescaling agϕ↔ 2ϕ and κ = 1/3.

C.2 Kinetic Theory

C.2.1 Kinetic Theory in the Continuum

Employing an Expansion in spherical harmonics the equation of motion for the spherical compo-
nents of the hard mode distribution is

∂tW
a
lm = −(DiWl′m′)aCilml′m′ + Eai

EX
i
l′m′ +Ba

i
BX

i
l′m′ , (C.16)

where the hard mode current j entering the classical field equations is defined as:

j0 =
m2

2
√
π
W a

00 and ji =
m2

4π
(vim)∗W a

1m. (C.17)

The background distribution Ω enters the kinetic equations via the constants EX,BX:

EX
i
′m =

∫
dΩvY

∗
lm(2vi −∇iv)Ω =

∑

l′m′
Ωl′m′

(
3 +

l(l + 1)− l′(l′ + 1)
2

)
Cilml′m′ ,

BX
i
lm = εijk

∫
dΩvY

∗
lmv

j∇kvΩ = −1
2

∑

abl′m′
Ωl′m′εijka(a+ 1)CjlmabC

k
abl′m′ . (C.18)

In the special case of an isotropic medium the equation of motion for the hard mode distribution
takes a simplified form:

∂tW
a
l′m′ = −(DiWlm)aCil′m′lm + δl1v

i
mE

a
i . (C.19)

The constants vim and Cilml′m′ are listed below.
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C.2.2 Lattice Discretization

The discretization of the Vlasov equation is straightforward and complicated only by the term
involving the chromo-magnetic field Bi(x) which vanishes in thermal equilibrium:

Ẇlm = −Cilml′m′
1
2
(
Ui(x)Wl′m′(x+ i)U+

i (x)− U−i(x)Wl′m′(x− i)U+
−i(x)

)
+ (C.20)

+EX
i
lm

1
2
(
Ei(x) + U−i(x)Ei(x− i)U+

−i(x)
)

+ BX
i
lm

1
2
(
Bi(x) + U−i(x)Bi(x− i)U+

−i(x)
)
.

The hard mode current j at every lattice site is defined via

j0(x) =
m2

2
√
π
W00(x) and ji(x) =

m2

4π
vi∗mW1m(x). (C.21)

C.2.3 Spherical Constants

The constants vim are defined via

vm =
∫

dΩY ∗lmv =




−δm1

√
2π
3 + δm,−1

√
2π
3

iδm1

√
2π
3 + iδm,−1

√
2π
3

δm0

√
4π
3


 . (C.22)

The constants Cilml′m′ parametrize the coupling between the Vlasov equations for individual spher-
ical components

Cilml′m′ =
∫

dΩvY
∗
lmv

jYl′m′ (C.23)

and can be expressed in the following form for l′ = l + 1

Cilml′m′ =




1√
2

[
δm′,m−1A(l,−m)− δm′,m+1A(l,m)

]
i√
2

[
−δm′,m−1A(l,−m) + δm′,m+1A(l,m)

]

δm,m′B(l,m)


 (C.24)

where the coefficient A(l,m) and B(l,m) are defined via

A(l,m) =

√
(l + 2 +m)(l + 1 +m)

2(2l + 1)(2l + 3)
and B(l,m) =

√
(l + 1−m)(l + 1 +m)

2(2l + 1)(2l + 3)
. (C.25)

For l′ = l − 1 the following form is obtained:

Cilml′m′ =




1√
2

[
−δm′,m−1A(l′,m′) + δm′,m+1A(l′,−m′)

]
i√
2

[
δm′,m−1A(l′,m′)− δm′,m+1A(l′,−m′)

]

δm,m′B(l′,−m′)


 . (C.26)

If |l′ − l| 6= 1 the constants vanish.





D Technical Implementation of the Simulations

Figure D.1: Main Window for the Classical Simulation

• Compiler and OS: gcc 4.1, Debian Linux (Etch,Lenny) and Mac OS X (10.5, Leopard)

• Library providing Basic Lattice Functionality: QDP++

• Graphical User Interfaces: Qt 4.1

• 3D-Visualization: Open-GL

• Various Numerical Routines: ”Numerical Recipes in C++’”
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