
Real time lattice simulations and
heavy quarkonia beyond deconfinement

Marcus Tassler

Institute for Theoretical Physics
Westfälische Wilhelms-Universität, Münster

August 20, 2007

Marcus Tassler Real time lattice simulations and heavy quarkonia at T > Tc



The static potential of the strong interactions
Spectral function and definition of a thermal qq̄-potential

(The expected phase diagram of nuclear matter, Source: GSI)

Heavy quarkonia beyond deconfinement?
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Beyond deconfinement...

The potential of the strong interactions at T=0

Description of heavy quarkonia via a Schrödinger equation
Due to the high mass of the constituents (mq � Ekin) heavy
quarkonia can be described by a nonrelativistic Schrödinger
equation:

i∂tψ = (−4
2µ

+ V̂ )ψ

Phenomenological potential

V̂ = kr̂ 1) − 4
3
αs(r̂)
r̂

2)

1 Linear part: Due to the formation of a flux tube (predicted
by strong coupling lattice QCD, k ≈ 1GeV/fm for cc̄)

2 Coulomb part: similar to QED (predicted by perturbation
theory, αs ≈ 0.15− 0.25)
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Beyond deconfinement...

The Debye screened potential at T > Tc

1 Flux tubes are assumed to break down at T > Tc (for now).
2 Due to the appearance of a thermal gluon mass mD the

Coulomb part of the static potential is screened, taking a
Yukawa-type form.

Heavy quarkonium bound states are thus expected to survive
beyond deconfinement in an increasingly screened Yukawa
potential.(Matsui, Satz, Phys.Lett.B178:416,1986)
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The heavy quarkonium spectral function

ρ(ω) =
1

2

“
1− e−βω

” Z ∞

−∞
dteiωtC>(t, 0)

(Definition of the heavy quarkonium spectral function)

The heavy quarkonium spectral function

Our goal will be the extraction of the heavy quarkonium spectral function ρ
from the mesonic correlator

C>(t, r) =

Z
d3x

D
ψ̄(t, x+

r

2
)γµWψ(t, x− r

2
)ψ̄(0, 0)γµψ(0, 0)

E
.

ρ is proportional to the dilepton rate from qq̄-annihilation in the plasma. A
point splitting has been introduced to the mesonic correlator C>(t, r) to
facilitate a perturbative treatment. C>(t, r) satisfies a Schrödinger-type
equation.

Infinite mass limit

Focusing on infinitely heavy quarks the correlator C>(t, r) can be obtained as
the analytic continuation C>(t, r) ∼ CE(it, r) of a Euclidean Wilson loop:

CE(τ, r) =
1

NC
Tr < W (0, r; τ, r)W (τ, r; τ,0)W (τ,0; 0,0)W (0,0; 0, r) >
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The real-time static potential

[i∂t − V (t, r)]C>(t, r) = 0

Definition of a qq̄-potential (Laine,Philipsen,Romatschke,Tassler,JHEP 0703 (2007) 054)

A static quarkonium potential at finite temperature can now be
defined from the infinite mass Schrödinger equation shown above.

Calculation in perturbation theory

A perturbative calculation of the static Wilson loop followed by an
analytic continuation yields the result

lim
t→∞

V (t, r) = −g
2CF

4Π
[mD +

exp(−mDr)
r

]− ig
2TCF

2π
φ(mDr)

with φ(x) = 2
∫∞
0

dzz
(z2+1)2

[
1− sin(zx)

zx

]
with the real part being the usual thermal potential and an additional
imaginary part originating from Landau damping.
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The imaginary part

Role of the imaginary part

The potential has been reinserted into the Schrödinger equation
supplemented by the appropriate mass terms to calculate the spectral
function of Bottomonium via the fourier transform of C>(t, 0).(Laine,2007)

Note that a finite resonance width has thus been introduced to the
potential model.

...but how can a dynamically defined quantity be investigated
on the lattice ?
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Fundamentals of real time lattice simulations
(Semi-) classical simulation of the Yang-Mills Theory

Hard-thermal loop effective theory
Hamiltonian lattice simulations

Real-time lattice simulations
Real-time lattice simulations are usually the attempt to study the long
range dynamics of a quantum field theory in a semiclassical context.
In the following an appropriate framework for a semiclassical treat-
ment of the quark gluon plasma including leading order quantum
effects will be introduced.

Lets start with statistics...
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The Hard-Thermal-Loop effective theory

Z =
∫
D[E,B,W ] e−βH with

H(x) =
1
2

∫
d3x

(
EaEa +BaBa +m2

D

∫
dΩ
4π
W a(x, v)W a(x, v)

)
(Partition function of the Hard-Thermal-Loop effective theory)

The Hard-Thermal-Loop effective theory (Blaizot,Iancu,Nair,1993)

A reduction scheme is applied to the Yang-Mills theory at finite
temperature by integrating out the UV degrees of freedom beyond a
scale µ� T followed by a dimensional reduction of the partition
function.
The effective field W (x,v) describes the charge density of hard
modes at x moving in the direction v.

Dynamics: Dynamical observables can be calculated by evolving the
ensemble using the classical equations of motion...
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Gauge field dynamics

The original claim (Grigoriev, Rubakov, Nucl. Phys. B 299 (1988) 67)

Quantum fields can be described using classical dynamics provided
the elementary excitations obey classical statistics.

Dynamical scales of the Yang-Mills theory
(Bödecker et al.,Phys. Rev. D 52 (1995) 4675)

A closer look at the classical limit using real time perturbation theory
reveals the following relevant scales for the Yang-Mills theory:

k ∼ T (Characteristic plasma scale)
Characteristic scale of the hard excitations.
g2T < k < gT (Collective dynamics)
A classical approximation of the gauge field is possible.
Hard-thermal loop interactions should be taken into account.
k < g2T (Nonperturbative dynamics)
Transition to the strong coupling regime.
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Hamiltonian lattice simulations

The lattice setup (Kogut, Susskind, Phys. Rev. D 11 (1975) 395)

In the following we will adopt a formalism where the spatial degrees
of freedom are discretized on a three dimensional lattice while the
(Minkowski-) time coordinate remains continouus. This formalism was
originally introduced to study flux tube dynamics on the lattice.

Gauge fields in the Hamiltonian formalism

The temporal gauge A0 = 0 is chosen.
Spatial gauge fields are discretized as usual as the parallel transport
connecting neighbouring lattice points.
The color electric field is defined from the dynamics of the spatial links:

U̇i(x) = iEi(x)Ui(x)

To preserve gauge invariance the field configurations have to satisfy
constraint: X

i

ˆ
Ei(x)− U−i(x)Ei(x− i)U+

−i(x)
˜

= 0

Gauss’s law is recovered in the continuum limit.
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The classical Yang-Mills field on the lattice

S =
1

2T

∫
d4xTrFµνF

µν

(The Yang-Mills action)

Wilsons action for real-time lattice simulations

S = β3

∫
dt

∑
x

 1
2N

TrU̇+
i U̇i

1) −
∑
i<j

[
1− 1

N
ReTrUij

]
2)


1 Electric part: Found by discretizing the temporal part of the

action
SE =

1
T

∫
d4xTrEiE

i, (Ei = F0i)

using the definition of the electric field on the lattice.
2 Magnetic part: The remaining spatial part of the action is

discretized in analogy to the 4-dimensional Wilson action.
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Equations of motion

Derivation of the equations of motion for the electric field
The classical lattice equations of motion for the electric field
can be derived by varying the action with respect to the link
variables.

δS = 0

The gauge field evolution is in turn defined by the electric field.

Equations of motion (Ambjorn, Askgaard et al., Phys. Lett. B 244 (1990) 479)

The complete equations of motion:

U̇i(x) = iEi(x)Ui(x) (defines the electric field)

Ėa
i = 2

∑
|j|6=i

ImTr(T aUij) (see above)

(The Gauss constraint remains satisfied, Scaling: a2gEa
i → Ea

i , a−1t→ t)
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The statistical ensemble

Generation of the ensemble (Moore,Phys. Rev. D 61 (2000) 056003)

A statistical set of starting configurations respecting gauss’s law
has to be created:

1 Pregenerate the gauge fields by a three dimensional
Monte Carlo (Moore: U=1).

2 Draw the electric fields from a gaussian distribution.
3 Project on the space of physical configurations using:

Ei(x)→ Ei(x) + γ(UiC(x+ î))U+
i − C(x))

(C: Violation of gauss’s law)

4 Evolve the fields using the EOM and repeat from (2) until
the gauge fields have completely thermalized.

Note: The shown procedure to thermalize the fields is similar to
the molecular dynamics used in a Hybrid Monte Carlo.
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Hard thermal loop simulations

Ẇn(x) = vi
n(2Ēi(x)− [PiWn(x+ i)− P−iWn(x− i)]) (EOM: HTL)

ji = (x)
(amD)2

Np
vi

nWn(x) (Color current)

(Lattice equations of motion)

”Discoball” discretization (Rebhan, Romatschke, Strickland, JHEP 09 (2005) 041)

To simulate the full effective theory the missing HTL equation of
motion can be implemented using the above scheme, where the
sphere of directions has been discretized using platonian solids. This
equation is then coupled to the lattice Yang-Mills field via the current.
An alternative expansion of the HTL-fields in spherical harmonics has
been implemented as well.

Used definitions:

Averaged electric field: Ēi(x) = 1
2
(Ei(x) + P−iEi(x− î))

Parallel transport: Piφ(x+ î) = Ui(x)φ(x+ î)U+
i (x), Discoball vertex: vn
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The imaginary part of the real time static potential
Expectations from perturbation theory

Some results...
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The imaginary part of the real time static potential
Expectations from perturbation theory

Extraction from Wilson loop dynamics

Extraction of the real time static potential

(i∆t − V (t, r))C>(t, r) = 0
(The real time static potential)

Extraction from Wilson loop dynamics

A Wilson loop of extent (r,t) was averaged over an ensemble of
configurations using classical or HTL improved simulations:

C>(t, r) =
1
N

〈
Tr

(
W+(t, x)W (0, x)

)〉
|x|=r

The potential was extracted using the 3-point derivative ∆t:

V (t, r) = i
∆tC>(t, r)
C>(t, r)

,∆tF =
−3F (t− δt) + 4F (t)− F (t+ δt)

2δt
We focus on the imaginary part which originates from Landau
damping and is expected to exist in the classical limit
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The imaginary part of the real time static potential
Expectations from perturbation theory

Analytic expectations and lattice regularisation
Comparison to the numerical results

Analytic expectations

(Some diagrams contributing to the analytic result)

Analytical result

The Wilson Loop was also calculated using resummed perturbation
theory followed by an analytic continuation leading to the following
result for the real time static potential:

V
(2)
> (t, r) = g2CF

Z
d3q

(2π)3
2− eiq3r − e−iq3r

2


1

q2 + ΠE(0,q)
+

Z ∞

−∞

dq0

π
nB(q0)q0

×
“
eβq0

e−iq0t − eiq0t
” »„

1

q2
−

1

(q0)2

«
ρE(q0,q) +

„
1

q2
3

−
1

q2

«
ρT (q0,q)

–ff

These expressions have been evaluated using lattice
regularization...
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Comparison to the numerical results

...and compared to the numerical results.
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Expectations from perturbation theory

Analytic expectations and lattice regularisation
Comparison to the numerical results

Conclusion

β3 N amD r=1a r=2a r=3a r=4a
Simulation∗ 16.0 12 0.0 -0.060(2) -0.156(8) -0.246(26) -0.319(56)

(∼ 200 Config.) 16.0 16 0.0 -0.059(2) -0.155(8) -0.245(22) -0.326(48)
16.0 12 0.211 -0.059(2) -0.147(7) -0.229(23) -0.297(51)

16.0 12 0.350 -0.030(2) -0.064(5) -0.096(12) -0.118(21)
13.5 12 0.250 -0.071(2) -0.174(10) -0.270(33) -0.341(97)

Analytic 16.0 ∞ 0.0 -0.0816 -0.1453 -0.1847 -0.2072

(Overview of the asymptotic results for t →∞)

Result (Laine, Philipsen, Tassler, Preprint: arXiv,0707 2458)

The analytic result from resummed perturbation theory for the
imaginary part of the real-time static potential has been confirmed
using the drastically different approach of semiclassical lattice
simulations. Nonperturbative corrections from long range field
dynamics where found to increase the damping of the correlator
C>(t, r) by ∼ 100%.
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