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Project description

Abstract: We present an estimate for the imaginary part of the recently introduced real-time
static potential. It can be extracted from the time evolution of the Wilson loop in classical
lattice gauge theory. The real-time static potential determines, through a Schrödinger-type
equation and a subsequent Fourier-transform of its solution, the spectral function of heavy
quarkonium in finite-temperature QCD. We also compare the results of the classical simulations
with those of Hard Thermal Loop improved simulations, as well as with analytic expectations
based on resummed perturbation theory.
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Real-time static potential

Heavy quarkonium spectral function

The heavy quarkonium spectral function in the vector channel, ρ(ω), can be obtained through
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1
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ω
T

)

∫ ∞

−∞
dt eiωtC>(t,0) (1)

from the mesonic correlator
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where a point-splitting has been introduced to facilitate a perturbative treatment. W
denotes a Wilson line connecting the adjacent operators along a straight path. The dilepton
production rate from qq̄-annihilation at temperature T is proportional to the spectral function.

Definition of a real-time static potential

Focusing on infinitely heavy quarks the correlator can be obtained, up to normalization and a
trivial phase factor, from the analytic continuation of a euclidean Wilson loop [1],

C>(t, r) ∝ CE(it, r), CE(τ, r) =
1

Nc
Tr 〈W (0, r; τ, r)W (τ, r; τ, 0)W (τ, 0; 0, 0)W (0, 0; 0, r)〉 .

At t 6= 0 we can write the time evolution in the form of a Schrödinger equation,

[i∂t − V>(t, r)]C>(t, r) = 0 , r ≡ |r| , (3)

which defines the object V> which we refer to as the real-time static potential.

-0.4 -0.2 0.0 0.2 0.4
ω/M - 2.0

0.0

1.0

2.0

3.0

4.0

5.0

-ρ
 / 

M
2

T = 250 MeV

T = 300 MeV

T = 350 MeV

T = 400 MeV

T = 450 MeV

T = 500 MeV

500 MeV << T << M

Figure 1: The resummed perturbative

bottomonium contribution to the spectral

function in the non-relativistic regime [2].

Results from perturbation theory

An analytic determination of the Wilson loop using HTL-
resummed perturbation theory yields the following result
in the large-time limit [1]: V>(∞, r) =

= −
g2CF

4π

[

mD +
exp(−mDr)

r

]

−
ig2TCF

4π
φ(mDr) ,

with φ(x) = 2

∫ ∞

0

dz z

(z2 + 1)2

[

1 −
sin(zx)

zx

]

. (4)

The real part corresponds to the standard Debye-screened
potential of a static quark pair. The Debye mass is
denoted by mD. The imaginary part of the potential
controls the damping of the correlator in eq. (3).

Physical role of the imaginary part: The spectral function in fig. 1 is obtained by
inserting the potential into a Schrödinger equation [like eq. (3) but supplemented by the usual
mass terms and spatial derivatives], and employing subsequently eq. (1). The imaginary part
of the potential introduces a thermal width to the tip of the quarkonium peak.

Goal of the simulation The goal of the simulation is to assess the extent of non-
perturbative corrections to the analytic V>(t, r). As usual, a direct analytic continuation from
numerical data for CE(τ, r) is not feasible. However, it turns out that the imaginary part of
V> is formally classical [1], and can hence be probed non-perturbatively with classical lattice
gauge theory simulations, of the type originally introduced by Grigoriev and Rubakov [4].

Classical lattice gauge theory simulations

Lattice setup

The framework of classical lattice gauge theory simulations [4] is quite similar to the Kogut-Susskind
Hamiltonian approach [5]:

• The fields are discretized using a 3-dimensional spatial lattice. The time coordinate remains continuous.

• Besides the spatial links Ui, corresponding to the discretized colour-magnetic fields, an electric field Ei is defined
via the relation U̇i(x) = iEi(x)Ui(x), where x ≡ (t,x) and U̇ ≡ ∂U/∂t.

• A temporal gauge is chosen. The space of physical states is constrained to gauge field configurations satisfying the
discretized Gauss law,

G(x) ≡
∑

i

[

Ei(x) − P−i(x)Ei(x− î)
]

− j0(x) ≡ 0 , (5)

with jµ denoting a possible colour current, and Pi the adjoint parallel transporter, Piφ(x+ î) = Ui(x)φ(x+ î)U †
i (x).

Classical Yang-Mills fields on the lattice

The classical approximation for Yang-Mills fields at finite temperature follows by supplementing the
phase space just introduced with a canonical time evolution and an average over initial conditions
with a thermal weight. The weight corresponds to the one in the classical partition function

Z =

∫

DUiDEi δ(G)e−βH , H =
1

Nc

∑

x

[

∑

i<j

Re Tr (1 − Uij) +
1

2
Tr (E2

i )

]

, (6)

where Uij is the plaquette. The classical equations of motion for the discretized system can be

obtained by invoking the Hamiltonian principle δS = 0, and read [Tr (T aT b) = δab/2] [6]:

U̇i(x) = iEi(x)Ui(x) , Ei =
∑

a

Eai T
a , Ėai (x) = −2 Im Tr [T a

∑

|j|6=i

Uij(x)] . (7)

Hard Thermal Loop effective theory

A more thorough treatment of the long-range dynamics of hot QCD is possible by using the so-
called Hard Thermal Loop (HTL) effective theory [7], which is obtained by integrating out the “hard
modes” (with momenta of the order of the temperature) from the system, in order to construct
an effective theory for the soft modes. In order to keep the effective theory local, certain on-shell
particle degrees of freedom need, however, to be added to the effective Hamiltonian [8]. Once this
system is discretized and the classical limit is taken, the properties of the hard modes change, and
the associated matching coefficient, denoted by m2

D
, needs to be tuned correspondingly [9]. In the

following we denote the new on-shell particle modes by W (x, v). In a numerical implementation
the main changes with respect to the purely classical theory are as follows:

1. The Hamiltonian obtains an additional part,

δH =
1

Nc

∑

x

[
∫

dΩv

4π

1

2
(amD)2Tr (W 2)

]

, (8)

where W ≡ T aW a(x, v) describes the charge density of the on-shell modes at x moving in the direction v = (1,v).

2. The velocities v need to be discretised. This could be done, for instance, with spherical harmonics [10] or with

platonian solids [11]. Choosing the latter approach, we replace
∫

dΩv/4πf(v) → 1/Np

∑Np
n=1 f(vn). The equation

of motion of the gauge fields then gets the source term

jµ(x) = (amD)2
1

Np

Np
∑

n=1

vµnWn(x) , Wn(x) ≡ W (x, vn) . (9)

3. Finally, the new fields also evolve in time, according to

Ẇn(x) = vin

(

Ēi(x) −
1

2

[

PiWn(x + î) − P−iWn(x− î)
]

)

, (10)

where Ēi(x) ≡ [Ei(x) + P−iEi(x− î)]/2.

Imaginary part of the real-time static potential from Wilson loop dynamics

The Wilson loop as a real-time observable

To obtain the imaginary part of the real-time static potential a rectangular Wilson loop of spatial
extent r = |r| and temporal extent t was measured using classical or HTL-improved lattice simu-
lations. The average over a statistical ensemble of initial configurations, as well as over lattice sites
and loop orientations, is denoted by Ccl(t, r).

Generation of the ensemble

The set of initial configurations respecting the Gauss law and distributed according to the statistical
weight in eq. (6) was created using the following algorithm:

1. Pre-generate the spatial gauge links Ui with a 3d Monte Carlo simulation.
2. Generate the electric fields from a gaussian distribution [cf. eq. (6)].
3. Project onto the space of physical configurations, satisfying the Gauss law [10].
4. Evolve the fields using the EOM, and repeat from step 2, until the fields have thermalized.

For the HTL-improved simulations the ensemble was generated using a similar procedure.
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Figure 2: The correlatorCcl(t, r) [3]. The

corresponding potential is shown in fig. 3.

Calculating the imaginary part of the potential

The real-time static potential can be calculated from eq. (3):

Vcl(t, r) ≡
i∂tCcl(t, r)

Ccl(t, r)
, Ccl(t, r) ≡

1

Nc
Tr

〈

W
†
r (t)Wr(0)

〉

(11)
with Wr(t) denoting a spatial Wilson line of length r. Timelike
Wilson lines have disappeared due to the temporal gauge. The
result obtained for Vcl(t, r) is purely imaginary.
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Figure 3: The imaginary part of the real-time static potential

from the classical simulation and from perturbation theory [3].

β3 N amD confs r = 1a r = 2a r = 3a r = 4a
Simulation 16.0 12 0.0 200 -0.060(2) -0.156(8) -0.246(26) -0.319(56)

16.0 16 0.0 160 -0.059(2) -0.155(8) -0.245(22) -0.326(48)
16.0 12 0.211 200 -0.059(2) -0.147(7) -0.229(23) -0.297(51)

16.0 12 0.350 182 -0.030(2) -0.064(5) -0.096(12) -0.118(21)
13.5 12 0.250 142 -0.071(2) -0.174(10) -0.270(33) -0.341(97)

Analytic 16.0 ∞ 0.0 - -0.0601 -0.1145 -0.1507 -0.1737

Table 1: Overview of the results in the large-time limit [3].

The results from the classical and HTL-improved simulations

agree within error bars for amD < 0.25 (at β = 16).

Comparison with analytic

expectations

As shown in fig. 3, the results obtained from
perturbation theory and from the classical nu-
merical simulations are remarkably similar.
At the same time, some amplification of the
imaginary part through the inclusion of non-
perturbative (and higher-order perturbative)
effects is visible in the simulation result.
The difference between the two results be-
comes more pronounced at later times. In
particular, in the large-time limit, a difference
between the perturbative and the numerical
results of up to ∼ 100% can be observed (at
β = 16), cf. table 1.

Conclusion The results from the real-time lattice simulations confirm the
existence of an imaginary part in the real-time static potential, indicated already by leading-order
Hard Loop resummed perturbation theory. In fact, non-perturbative and higher order perturbative
corrections amplify the imaginary part by up to ∼ 100%. The imaginary part widens (and lowers)
the quarkonium peaks in fig. 1, although the qualitative structures remain unchanged. As a side
remark, we note that the existence of an imaginary part also leads to strong damping in the solu-
tion of the Schrödinger equation, thus significantly facilitating the numerical determination of the
spectral function.
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