

Glasfasern für große Entfernungen Dispersions- Management und optische Verstärker

Marcus Tassler

Entwicklung der Kommunikation über große Entfernungen am Beispiel der Transatlantikverbindung

1.Transatlantikkabel:1858
Technische Daten:

Kapazität: 10 Wörter/Std

Kosten: 350 000 Pfund

- 3 gescheiterte Versuche der Verlegung
- Ausfall nach 4 Wochen

2.Transatlantikkabel:1866 **Technische Daten:** Kapazität: 45 Wörter/Min Kosten eines Telegramms: 20 Pfund (1. Versuch der Verlegung scheiterte)

Transatlantikverbindungen 1880

Fernverbindungen 1924

Entwicklung der Übertragungstechnik

Erstes Transatlantik-Telefonkabel: 1956

Technische Daten:
Kapazität: 500 kbit/s
36 Fernsprechkanäle
51 Verstärker im Abstand von je 70 km
(Abgeschaltet: 1978)

Erstes Transatlantik-Glasfaserkabel: 1988

Technische Daten:
Kapazität: 560 Mbit/s
37800 Verbindungen gleichzeitig
Kosten: 350 Mio US\$ (noch heute in Betrieb)

Einführung

10 GBit/s pro Kanal
 160 Kanäle pro Faser
 72 Fasern pro Kabel
 Insgesamt: 115,2 Tbit/s

Angestrebt: 40 GBit/s

Die Datenübertragung erfolgt heute mit Single-Mode Glasfasern, wobei im Rahmen der WDM-Technik verschiedene Wellenlängen zur Datenübertragung genutzt werden können.

Mögliche Realisierung eines Multiplexers

Aufbau einer Übertragungsstrecke

Dispersions- Management über große Distanzen

Dispersionseffekte und -management

Glasfasern für große Entfernungen – p.16

Dispersionseffekte und -managementLineare Dispersionseffekte

Dispersionseffekte und -management

- Lineare Dispersionseffekte
- Nichtlineare Dispersionseffekte

Dispersionseffekte und -management

- Lineare Dispersionseffekte
- Nichtlineare Dispersionseffekte

Solitonen in der Datenübertragung

Dispersionseffekte und -management

- Lineare Dispersionseffekte
- Nichtlineare Dispersionseffekte

Solitonen in der Datenübertragung

 Die nichtlineare Schrödinger- Gleichung für Glasfasern

Dispersionseffekte und -management

- Lineare Dispersionseffekte
- Nichtlineare Dispersionseffekte

Solitonen in der Datenübertragung

- Die nichtlineare Schrödinger- Gleichung für Glasfasern
- "Guiding- Centre" und Quasi-Solitonen

Chromatische Dispersion

- Chromatische Dispersion: $D = \frac{1}{c} \frac{dn}{d\lambda}$
- Brechungsindex: $n(\omega, k) = \frac{ck}{\omega}$

Chromatische Dispersion

- Chromatische Dispersion: $D = \frac{1}{c} \frac{dn}{d\lambda}$
- Brechungsindex: $n(\omega, k) = \frac{ck}{\omega}$

Zu unterscheiden sind folgende Effekte:

• I. Wellenleiterdispersion Ursache: Unterschiedlichen Ausbreitungsgeschwindigkeit von Wellen verschiedener Frequenz nach $\frac{\omega}{k} = \frac{c}{n(k,\omega)}$

Chromatische Dispersion

- Chromatische Dispersion: $D = \frac{1}{c} \frac{dn}{d\lambda}$
- Brechungsindex: $n(\omega, k) = \frac{ck}{\omega}$

Zu unterscheiden sind folgende Effekte:

 II. Materialdispersion
 Wellenlängenabhängigkeit der Brechzahl des Fasermaterials nach obiger Beziehung

Kompensation der chromatischen Dispersion

Die chromatische Dispersion kann durch die Hintereinanderschaltung von Lichtwellenleitern mit entgegengesetzter chromatischer Dispersion kompensiert werden.

DCF: Dispersionskompensierende Faser

Kompensation der chromatischen Dispersion

Bedingungen für vollständige Kompensation:

Kompensation der chromatischen Dispersion

Bedingungen für vollständige Kompensation: • $D_{SMF}L_{SMF} = D_{DCF}L_{DCF}$

Kompensation der chromatischen Dispersion

Bedingungen für vollständige Kompensation: • $D_{SMF}L_{SMF} = D_{DCF}L_{DCF}$ Dispersion: $D = \frac{1}{c} \frac{dn}{d\lambda}$

Kompensation der chromatischen Dispersion

Bedingungen für vollständige Kompensation:

• $D_{SMF}L_{SMF} = D_{DCF}L_{DCF}$

Länge der Fasern

Kompensation der chromatischen Dispersion

Bedingungen für vollständige Kompensation:

- $D_{SMF}L_{SMF} = D_{DCF}L_{DCF}$
- $S_{SMF}L_{SMF} = S_{DCF}L_{DCF}$

Kompensation der chromatischen Dispersion

Bedingungen für vollständige Kompensation:

- $D_{SMF}L_{SMF} = D_{DCF}L_{DCF}$
- $S_{SMF}L_{SMF} = S_{DCF}L_{DCF}$

Dispersionssteigung: $S = \frac{dD}{d\lambda}$

Elastische Effekte

- Selbstphasenmodulation (SPM)
- Kreuzphasenmodulation (XPM)
- Vierwellenmischung (FWM)

Inelastische Effekte

- Stimulierte Ramann- Streuung (SRS)
- Stimulierte Brillouin- Streuung (SBS)

Die elastischen Effekte gehen auf den Kerr-Effekt zurück:

 $n(E) = n_0 + n_2 \cdot E^2$

Die elastischen Effekte gehen auf den Kerr-Effekt zurück:

 $n(E) = n_0 + n_2 \cdot E^2$

Über die elektrische Polarisation \vec{P} im Lichtwellenleiter

$$\vec{P}(\vec{r},t) = \underbrace{\epsilon_0 \chi_1 \vec{E}(\vec{r},t)}_{\bullet} + \epsilon_0 \chi_3 \left| \vec{E}(\vec{r},t) \right|^2 \vec{E}(\vec{r},t)$$

Lineare Polarisation

Nichtlineare Polarisation

folgt als Kerr-Koeffizient: $n_2 = \frac{3}{4\epsilon_0 cn^2} Re(\chi_3)$

Elastische Effekte: Selbstphasenmodulation

- Selbstphasenmodulation ist die Störung eines einzelnen WDM- Kanals über den Kerr-Effekt
- Im Bereich einer steigenden Pulsflanke wird die Frequenz eines Signals reduziert und im Bereich einer fallenden erhöht

Elastische Effekte: Selbstphasenmodulation

- Die Phasenmodulation eines Signals bewirkt bei normaler Dispersion eine symmetrische Verbreiterung des Spektrums
- Bei anormaler Dispersion tritt eines Kompression des Signals auf

Elastische Effekte: Kreuzphasenmodulation

- Bei Kreuzphasenmodulation wechselwirken zwei WDM Kanäle über den Kerr-Effekt
- Aufgrund von Dispersion überholen sich Signale zweier Kanäle und es kommt zur Wechselwirkung

Elastische Effekte: Kreuzphasenmodulation

 Je ähnlicher die Gruppengeschwindigkeit der Kanäle umso größer die Wechselwirkung

Elastische Effekte: Vierwellenmischung

 Bei N Signalfrequenzen treten N²(N - 1)/2 Mischprodukte unterschiedlicher Intensität und Frequenz auf

Unelastische Effekte: Raman- Streuung

 Bei Anregung eines Atoms durch ein Photon kann ein Teil der Anregungsenergie als Phonon abgegeben werden. Die restliche Energie wird als Photon mit niedrigerer Frequenz abgegeben.

Unelastische Effekte: Raman- Streuung

 Bei hohen Leistungen kommt es zur Besetzungsinversion und zu stimulierter Raman-Streuung

Unelastische Effekte: Brillouin- Streuung

- Tritt auf bei Streuung von Photonen an Phononen des verwendeten Mediums
- Das ausfallende Photon besitzt eine um die Frequenz des Phonons gegenüber dem einfallenden Photon erniedrigte Frequenz und wird in entgegengesetzte Richtung reflektiert

Brechungsindex in Glasfasern: $n = \frac{ck}{\omega} = n_0(\omega) + n_2 |E|^2$

Brechungsindex in Glasfasern: $n = \frac{ck}{\omega} = n_0(\omega) + n_2 E|^2$ Kerr-Koeffizient

Brechungsindex in Glasfasern: $n = \frac{ck}{\omega} = n_0(\omega) + n_2|E|^2$

Brechungsindex in Glasfasern: $n = \frac{ck}{\omega} = n_0(\omega) + n_2 |E|^2$ Taylorentwicklung der Wellenzahl k: $k - k_0 = k'(\omega_0)(\omega - \omega_0) + \frac{k''(\omega_0)}{2}(\omega - \omega_0)^2 + \frac{\partial l}{\partial |E|^2} |E|^2$

Brechungsindex in Glasfasern: $n = \frac{ck}{\omega} = n_0(\omega) + n_2 |E|^2$ Taylorentwicklung der Wellenzahl k: $k - k_0 = k'(\omega_0)(\omega - \omega_0) + \frac{k''(\omega_0)}{2}(\omega - \omega_0)^2 + \frac{\partial l}{\partial |E|^2} |E|^2$ Operatoren: $(k - k_0)E \rightarrow i\frac{\partial E}{\partial z}, (\omega - \omega_0)E \rightarrow -i\frac{\partial E}{\partial t}$

Brechungsindex in Glasfasern: $n = \frac{ck}{\omega} = n_0(\omega) + n_2 |E|^2$ Taylorentwicklung der Wellenzahl k: $k - k_0 = k'(\omega_0)(\omega - \omega_0) + \frac{k''(\omega_0)}{2}(\omega - \omega_0)^2 + \frac{\partial l}{\partial |E|^2} |E|^2$ Operatoren: $(k - k_0)E \rightarrow i\frac{\partial E}{\partial z}, (\omega - \omega_0)E \rightarrow -i\frac{\partial E}{\partial t}$ $\left[i\left(\frac{\partial}{\partial z} + k'\frac{\partial}{\partial t}\right) - \frac{k''}{2}\frac{\partial^2}{\partial t^2} + \frac{\partial k}{\partial |E|^2} |E|^2\right]E = 0$

Brechungsindex in Glasfasern: $n = \frac{ck}{\omega} = n_0(\omega) + n_2 |E|^2$ Taylorentwicklung der Wellenzahl k: $k - k_0 = k'(\omega_0)(\omega - \omega_0) + \frac{k''(\omega_0)}{2}(\omega - \omega_0)^2 + \frac{\partial l}{\partial |E|^2} |E|^2$ **Operatoren:** $(k - k_0)E \rightarrow i\frac{\partial E}{\partial z}, (\omega - \omega_0)E \rightarrow -i\frac{\partial E}{\partial t}$ $\left[i\left(\frac{\partial}{\partial z} + k'\frac{\partial}{\partial t}\right) - \frac{k''}{2}\frac{\partial^2}{\partial t^2} + \frac{\partial k}{\partial |E|^2}|E|^2\right]E = 0$ **Einsetzen** von $k' \approx \frac{n_0(\omega_0)}{c}, k'' \approx \frac{2}{c} \frac{\partial n_0}{\partial \omega_0}, \frac{\partial k}{\partial |E|^2} \approx \frac{\omega_0 n_2}{c}$

Brechungsindex in Glasfasern: $n = \frac{ck}{\omega} = n_0(\omega) + n_2 |E|^2$ Taylorentwicklung der Wellenzahl k: $k - k_0 = k'(\omega_0)(\omega - \omega_0) + \frac{k''(\omega_0)}{2}(\omega - \omega_0)^2 + \frac{\partial l}{\partial |E|^2} |E|^2$ **Operatoren:** $(k - k_0)E \rightarrow i\frac{\partial E}{\partial z}, (\omega - \omega_0)E \rightarrow -i\frac{\partial E}{\partial t}$ $\left[i\left(\frac{\partial}{\partial z} + k'\frac{\partial}{\partial t}\right) - \frac{k''}{2}\frac{\partial^2}{\partial t^2} + \frac{\partial k}{\partial |E|^2}|E|^2\right]E = 0$ Einsetzen von $k' \approx \frac{n_0(\omega_0)}{c}, k'' \approx \frac{2}{c} \frac{\partial n_0}{\partial \omega_0}, \frac{\partial k}{\partial |E|^2} \approx \frac{\omega_0 n_2}{c}$ $i\frac{\partial E}{\partial z} - \frac{k''}{2}\frac{\partial^2 E}{\partial \tau^2} + \frac{\omega_0 n_2}{c}|E|^2 E = 0$ mit $\tau = t - k'z$

NLSE: $i \frac{\partial E}{\partial z} - \frac{k''}{2} \frac{\partial^2 E}{\partial \tau^2} + \frac{\omega_0 n_2}{c} |E|^2 E = 0$

NLSE:
$$i\frac{\partial E}{\partial z} - \frac{k''}{2}\frac{\partial^2 E}{\partial \tau^2} + \frac{\omega_0 n_2}{c}|E|^2 E = 0$$

Es gilt: $k'' = -\frac{\lambda^2}{2\pi c}D$

NLSE: $i\frac{\partial E}{\partial z} - \frac{k''}{2}\frac{\partial^2 E}{\partial \tau^2} + \frac{\omega_0 n_2}{c}|E|^2 E = 0$ **Es gilt:** $k'' = -\frac{\lambda^2}{2\pi c}D$ **Dispersionsdistanz:** $z_0 = \frac{t_0}{|k''|}$

NLSE: $i\frac{\partial E}{\partial z} - \frac{k''}{2}\frac{\partial^2 E}{\partial \tau^2} + \frac{\omega_0 n_2}{c}|E|^2 E = 0$ Es gilt: $k'' = -\frac{\lambda^2}{2\pi c}D$ Dispersionsdistanz: $z_0 = t_0$ Pulsdauer: t_0

NLSE: $i\frac{\partial E}{\partial z} - \frac{k''}{2}\frac{\partial^2 E}{\partial \tau^2} + \frac{\omega_0 n_2}{c}|E|^2 E = 0$ Es gilt: $k'' = -\frac{\lambda^2}{2\pi c}D$ **Dispersions**distanz: $z_0 = \frac{t_0}{|k''|}$ **Pulsdauer:** t_0 Mit $T = \frac{\tau}{t_0}$, $Z = \frac{z}{z_0}$ und $q = \sqrt{\frac{\omega_0 n_2 z_0}{c}} E$ folgt: **NLSE:** $i\frac{\partial q}{\partial Z} \pm \frac{1}{2}\frac{\partial^2 q}{\partial T^2} + |q|^2 q = 0$

+: D > 0 (Anormale Dispersion), -: D < 0 (Normale Dispersion)

Lösungen der NLSE D > 0: **Helles Soliton** $\eta sech[\eta(T + \kappa Z - T_0)]e^{-i(\kappa T + \frac{(\kappa^2 - \eta^2)Z}{2} + \sigma}$

• D < 0: Dunkles Soliton $\eta sech[\eta(T + \kappa Z - T_0)]e^{-i(\kappa T + \frac{\kappa^2 Z}{2} - \sigma_0 - \sigma)}$

Beide: η : Amplitude, κ : Frequenzverschiebung, σ :Phase Dunkles Soliton: a: Tiefe des Solitons, $\sigma_0 = \eta T \sqrt{1 - a^2} + tan^{-1} \left[\frac{atanh(\eta aT)}{\sqrt{1 - a^2}} \right] - \frac{\eta^2 (3 - a^2)Z}{2}$

Nichtlineare Schrödinger Gleichung für gedämpfte Fasern mit periodische Verstärkung $i\frac{\partial q}{\partial Z} + \frac{d(Z)}{2}\frac{\partial^2 q}{\partial T^2} + |q|^2 q =$ $-i\Gamma q + i\alpha \sum_{n=0}^{N} \delta(Z - nZ_a)q(T, nZ_a)$

Nichtlineare Schrödinger Gleichung für gedämpfte Fasern mit periodische Verstärkung $i\frac{\partial q}{\partial Z} + \frac{d(Z)}{2}\frac{\partial^2 q}{\partial T^2} + |q|^2 q =$ $-i\Gamma q + i\alpha \sum_{n=0}^{N} \delta(Z - nZ_a)q(T, nZ_a)$ d(Z): ortsabhängiger Dispersionsterm

Nichtlineare Schrödinger Gleichung für gedämpfte Fasern mit periodische Verstärkung $i\frac{\partial q}{\partial Z} + \frac{d(Z)}{2}\frac{\partial^2 q}{\partial T^2} + |q|^2 q =$ $-i\Gamma q + i\alpha \sum_{n=0}^{N} \delta(Z - nZ_a)q(T, nZ_a)$

Γ: Dämpfungsterm

Nichtlineare Schrödinger Gleichung für gedämpfte Fasern mit periodische Verstärkung $i\frac{\partial q}{\partial Z} + \frac{d(Z)}{2}\frac{\partial^2 q}{\partial T^2} + |q|^2 q =$ $-i\Gamma q + i\alpha \sum_{n=0}^{N} \delta(Z - nZ_a)q(T, nZ_a)$ Za: Verstärkerabstand

Glasfasern für große Entfernungen – p.33

Nichtlineare Schrödinger Gleichung für gedämpfte Fasern mit periodische Verstärkung $i\frac{\partial q}{\partial Z} + \frac{d(Z)}{2}\frac{\partial^2 q}{\partial T^2} + |q|^2 q =$ $-i\Gamma q + i\alpha \sum_{n=0}^{N} \delta(Z - nZ_a)q(T, nZ_a)$ α : Verstärkung mit $\alpha = e^{\Gamma Z_a} - 1$

Nichtlineare Schrödinger Gleichung für gedämpfte Fasern mit periodische Verstärkung $i\frac{\partial q}{\partial Z} + \frac{d(Z)}{2}\frac{\partial^2 q}{\partial T^2} + |q|^2 q =$ $-i\Gamma q + i\alpha \sum_{n=0}^{N} \delta(Z - nZ_a)q(T, nZ_a)$ Mit $a(Z) = \sqrt{\frac{2\Gamma Z_a}{1 - e^{-2\Gamma Z_a}}}e^{-\Gamma(Z - nZ_a)}$ und $u = \frac{q}{a}$ folgt: $\frac{\partial u}{\partial Z} = i\frac{d(Z)}{2}\frac{\partial^2 u}{\partial T^2} + ia^2(Z)|u|^2u$

Nichtlineare Schrödinger Gleichung für gedämpfte Fasern mit periodische Verstärkung $i\frac{\partial q}{\partial Z} + \frac{d(Z)}{2}\frac{\partial^2 q}{\partial T^2} + |q|^2 q =$ $-i\Gamma q + i\alpha \sum_{n=0}^{N} \delta(Z - nZ_a)q(T, nZ_a)$ Mit $a(Z) = \sqrt{\frac{2\Gamma Z_a}{1-e^{-2\Gamma Z_a}}}e^{-\Gamma(Z-nZ_a)}$ und $u = \frac{q}{a}$ folgt: $\frac{\partial u}{\partial Z} = i \frac{d(Z)}{2} \frac{\partial^2 u}{\partial T^2} + i a^2(Z) |u|^2 u$ $u = e^{(\phi \cdot \nabla)\nu} \Rightarrow \left| \frac{\partial \nu}{\partial Z} = \frac{i}{2} \frac{\partial^2 \nu}{\partial T^2} + i |\nu|^2 \nu + O(Z_a^2) \right|$

Nichtlineare Schrödinger Gleichung für gedämpfte Fasern mit periodische Verstärkung $i\frac{\partial q}{\partial Z} + \frac{d(Z)}{2}\frac{\partial^2 q}{\partial T^2} + |q|^2 q =$ $-i\Gamma q + i\alpha \sum_{n=0}^{N} \delta(Z - nZ_a)q(T, nZ_a)$ Mit $a(Z) = \sqrt{\frac{2\Gamma Z_a}{1-e^{-2\Gamma Z_a}}}e^{-\Gamma(Z-nZ_a)}$ und $u = \frac{q}{a}$ folgt: $\frac{\partial u}{\partial Z} = i \frac{d(Z)}{2} \frac{\partial^2 u}{\partial T^2} + i a^2(Z) |u|^2 u$ $u = e^{(\phi \cdot \nabla)\nu} \Rightarrow \frac{\partial \nu}{\partial Z} = \frac{i}{2} \frac{\partial^2 \nu}{\partial T^2} + i |\nu|^2 \nu + O(Z_a^2)$ Lie-Transformation

Nichtlineare Schrödinger Gleichung für gedämpfte Fasern mit periodische Verstärkung $i\frac{\partial q}{\partial Z} + \frac{d(Z)}{2}\frac{\partial^2 q}{\partial T^2} + |q|^2 q =$ $-i\Gamma q + i\alpha \sum_{n=0}^{N} \delta(Z - nZ_a)q(T, nZ_a)$ Mit $a(Z) = \sqrt{\frac{2\Gamma Z_a}{1-e^{-2\Gamma Z_a}}} e^{-\Gamma(Z-nZ_a)}$ und $u = \frac{q}{a}$ folgt: $\frac{\partial u}{\partial Z} = i \frac{d(Z)}{2} \frac{\partial^2 u}{\partial T^2} + i a^2(Z) |u|^2 u$ $u = e^{(\phi \cdot \nabla)\nu} \Rightarrow \frac{\partial \nu}{\partial Z} = \frac{i}{2} \frac{\partial^2 \nu}{\partial T^2} + i |\nu|^2 \nu + O(Z_a^2)$ Kleiner Parameter mit $Z_a = \dot{z}_a/z_0$

Ausgangspunkt: $i\frac{\partial u}{\partial Z} + \frac{d(Z)}{2}\frac{\partial^2 u}{\partial T^2} + a^2(Z)|u|^2u = 0$

Ausgangspunkt: $i\frac{\partial u}{\partial Z} + \frac{d(Z)}{2}\frac{\partial^2 u}{\partial T^2} + a^2(Z)|u|^2u = 0$ Mit $Z' = \int_0^Z a^2(Z)dZ$ und $d_e(Z') = \frac{d(Z)}{a^2(Z)}$ folgt: $i\frac{\partial u}{\partial Z'} + \frac{d_e(Z')}{2}\frac{\partial^2 u}{\partial T^2} + |u|^2u = 0$

Ausgangspunkt: $i\frac{\partial u}{\partial Z} + \frac{d(Z)}{2}\frac{\partial^2 u}{\partial T^2} + a^2(Z)|u|^2 u = 0$ Mit $Z' = \int_0^Z a^2(Z)dZ$ und $d_e(Z') = \frac{d(Z)}{a^2(Z)}$ folgt: $i\frac{\partial u}{\partial Z'} + \frac{d_e(Z')}{2}\frac{\partial^2 u}{\partial T^2} + |u|^2 u = 0$ Über $u = \sqrt{p(Z)}\nu(p(Z')T, Z')e^{i\frac{c(Z')}{2}T^2}$ folgt weiter: $i\frac{\partial \nu}{\partial Z'} + \frac{d_e p^2}{2}\frac{\partial^2 \nu}{\partial \tau^2} + p|\nu|^2\nu = \frac{K_1\tau^2 p}{2}\nu$ mit: $\tau = pT \frac{dp}{dZ} = -Cpd_e K_1 = \frac{dC/dZ + C^2d_e}{p^3}$

Ausgangspunkt: $i\frac{\partial u}{\partial Z} + \frac{d(Z)}{2}\frac{\partial^2 u}{\partial T^2} + a^2(Z)|u|^2 u = 0$ Mit $Z' = \int_0^Z a^2(Z) dZ$ und $d_e(Z') = \frac{d(Z)}{a^2(Z)}$ folgt: $i\frac{\partial u}{\partial Z'} + \frac{d_e(Z')}{2}\frac{\partial^2 u}{\partial T^2} + |u|^2 u = 0$ Über $u = \sqrt{p(Z)}\nu(p(Z')T, Z')e^{i\frac{c(Z')}{2}T^2}$ folgt weiter: $i\frac{\partial\nu}{\partial Z'} + \frac{d_e p^2}{2}\frac{\partial^2\nu}{\partial\tau^2} + p|\nu|^2\nu = \frac{K_1\tau^2 p}{2}\nu$ mit: $\tau = pT \frac{dp}{dZ} = -Cpd_e K_1 = \frac{dC/dZ + C^2d_e}{n^3}$ Bei einem **Dispersionsprofil** mit K_1 =const, $d_e p = 1$ folgt: $\left[i\frac{\partial\nu}{\partial Z''} + \frac{1}{2}\frac{\partial^2\nu}{\partial\tau^2} + \left(|\nu|^2 - \frac{K_1\tau^2}{2}\right)\nu = 0\right]$

DMS- Übertragung mit 40 GB/s über 10 000 km

Solitonen

Schwierigkeiten bei der Datenübertragung mit Solitonen

- Wechselwirkung der Solitonen
- Nutzung mehrerer Kanäle
- Propagation der Solitonen in Verstärkern
- Störung der Solitonen durch Rauschen

Optische Verstärker in Glasfasernetzen

Faserverstärker

Glasfasern für große Entfernungen – p.38

Faserverstärker

Erbium dotierte Faserverstärker

Faserverstärker

- Erbium dotierte Faserverstärker
- Verstärkung, Bandbreite und Rauschen

Faserverstärker

- Erbium dotierte Faserverstärker
- Verstärkung, Bandbreite und Rauschen
- Verstärkersolitonen

Faserverstärker

- Erbium dotierte Faserverstärker
- Verstärkung, Bandbreite und Rauschen
- Verstärkersolitonen

Zukünftige optische Verstärker

Faserverstärker

- Erbium dotierte Faserverstärker
- Verstärkung, Bandbreite und Rauschen
- Verstärkersolitonen
- Zukünftige optische Verstärker
- Halbleiterverstärker (SOA)

Erbium dotierte Faserverstärker (EDFA)

- Ein Pumplaser mit $\lambda = 980nm$ hebt Elektronen aus dem Grundzustand in ein höheres Niveau.
- Die Elektronen fallen nach etwa 1µs auf ein Zwischenniveau.

- Zwischen dem Grundzustand und dem Zwischenzustand kommt es zur Besetzungsinversion.
- Ein eingespeistes Signal bewirkt stimulierte Emission und wird so verstärkt.

• Der Zwischenzustand wird häufig auch über einen Pumplaser mit $\lambda = 1480nm$ direkt besetzt.

Verstärkung und Bandbreite bei einem 2 Niveau-Faserverstärker

• Verstärkungskoeffizient $g(\omega) = \frac{g_0}{1 + (\omega - \omega_a)^2 T_2^2 + P/P_s}$

Verstärkung und Bandbreite bei einem 2 Niveau-Faserverstärker

• Verstärkungskoeffizient $g(\omega) = \frac{g_0}{1 + (\omega - \omega_a)^2 T_2^2 + P/P_s}$ Verstärkungsmaximum

Verstärkung und Bandbreite bei einem 2 Niveau-Faserverstärker

• Verstärkungskoeffizient $g(\omega) = \frac{g_0}{1 + (\omega - \omega_a)^2 T_2^2 + P/P_s}$ Übergangsfrequenz

Verstärkung und Bandbreite bei einem 2 Niveau-Faserverstärker

• Verstärkungskoeffizient $g(\omega) = \frac{g_{\sigma}}{1+(\omega-\omega_a)^2 T_2^2 + P/P_s}$ Dipolrelaxationszeit

Verstärkung und Bandbreite bei einem 2 Niveau-Faserverstärker

• Verstärkungskoeffizient $g(\omega) = \frac{g_0}{1+(\omega-\omega_a)^2T_2^2} + P_s$ Eingangsleistung

Verstärkung und Bandbreite bei einem 2 Niveau-Faserverstärker

• Verstärkungskoeffizient $g(\omega) = \frac{g_0}{1+(\omega-\omega_a)^2T_2^2+F/P_s}$ Sättigungsleistung

Verstärkung und Bandbreite bei einem 2 Niveau-Faserverstärker

- Verstärkungskoeffizient $g(\omega) = \frac{g_0}{1 + (\omega - \omega_a)^2 T_2^2 + P/P_s}$
- Verstärkung $G = e^{\int_0^L g(z)dz}$

Verstärkung und Bandbreite bei einem 2 Niveau-Faserverstärker

Tatsächliche Verstärkung und Bandbreite bei einem EDFA

Rauschen

Neben der stimulierten Emission kommt es zu spontaner Emission (ASE) von Photonen. Als Folge tritt ein gaußförmiges weißes Rauschen auf.

Rauschen

Rauschzahl

$$F = \frac{OSNR|_{Eingang}}{OSNR|_{Ausgang}} = \frac{1}{G} (1 + 2n_{sp}(G - 1))$$

Rauschen

Rauschzahl

$$F = \frac{OSNR|_{Eingang}}{OSNR|_{Ausgang}} = \frac{1}{G}(1 + 2n_{sp}(G - 1))$$

OSNR: Optical Signal to Noise Ratio

Rauschen

Rauschzahl $F = \frac{OSNR|_{Eingang}}{OSNR|_{Ausgang}} = \frac{1}{G}(1 + 2n_{sp}(G - 1))$ **Inversionskoeffizient** $(n_{sp} \ge 1)$

Rauschen

Rauschzahl

$$F = \frac{OSNR|_{Eingang}}{OSNR|_{Ausgang}} = \frac{1}{G}(1 + 2n_{sp}(G - 1))$$
$$G \gg 1 \Rightarrow F \approx 2n_{sp} \ge 3dB$$

Rauschen

Ausgangssignal $A_{aus}(t) = \sqrt{G}A_{ein}(t) + A_{ASE}(t)$

Rauschen

Ausgangssignal $A_{aus}(t) = \sqrt{G}A_{ein}(t) + A_{ASE}(t)$ Rauschterm

Entwicklung der Rauschzahl

Verstärkersolitonen

Die Pulsausbreitung in einem EDFA wird über die **Ginzburg- Landau Gleichung** beschrieben: $i\frac{\partial U}{\partial \xi} - \frac{1}{2}(s+id)\frac{\partial^2 u}{\partial \tau^2} + (1+i\frac{\mu_2}{2})|u|^2u = \frac{i}{2}\mu u$

Verstärkersolitonen

Die Pulsausbreitung in einem EDFA wird über die Ginzburg- Landau Gleichung beschrieben: $i\frac{\partial U}{\partial \xi} - \frac{1}{2}(s + id)\frac{\partial^2 u}{\partial \tau^2} + (1 + i\frac{\mu_2}{2})|u|^2u = \frac{i}{2}\mu u$

+1: Normale GVD, -1: Anormale GVD

Verstärkersolitonen

Die Pulsausbreitung in einem EDFA wird über die Ginzburg- Landau Gleichung beschrieben: $i\frac{\partial U}{\partial \xi} - \frac{1}{2}(s+id)\frac{\partial^2 u}{\partial \tau^2} + (1+i\frac{\mu_2}{2})|u|^2u = \frac{i}{2}\mu u$

EDFA- Parameter (typisch: $d \sim 1$, $\mu \sim 1$, $\mu_2 \sim 10^{-4}$)

 $d = \mu = \mu_2 = 0 \Rightarrow \mathsf{NLSE}$

Verstärkersolitonen

Die Pulsausbreitung in einem EDFA wird über die Ginzburg- Landau Gleichung beschrieben: $i\frac{\partial U}{\partial \xi} - \frac{1}{2}(s+id)\frac{\partial^2 u}{\partial \tau^2} + (1+i\frac{\mu_2}{2})|u|^2u = \frac{i}{2}\mu u$ Die Gleichung erlaubt die Propagation von solitären Wellen: $u(\xi,\tau) = N_s[sech(p\tau)]^{1+iq}e^{iK_s\xi}$

Verstärkersolitonen

Die Pulsausbreitung in einem EDFA wird über die **Ginzburg- Landau Gleichung** beschrieben: $i\frac{\partial U}{\partial \xi} - \frac{1}{2}(s+id)\frac{\partial^2 u}{\partial \tau^2} + (1+i\frac{\mu_2}{2})|u|^2u = \frac{i}{2}\mu u$ Die Gleichung erlaubt die Propagation von solitären Wellen: $u(\xi,\tau) = N_s[sech(p\tau)]^{1+iq}e^{iK_s\xi}$

Zu bestimmende Lösungsparameter: $N_s(s, d, \mu, \mu_2), p(s, d, \mu, \mu_2),$ $q(s, d, \mu, \mu_2), K_s(s, d, \mu, \mu_2)$

Verstärkersolitonen

Die Pulsausbreitung in einem EDFA wird über die Ginzburg- Landau Gleichung beschrieben: $i\frac{\partial U}{\partial \varepsilon} - \frac{1}{2}(s+id)\frac{\partial^2 u}{\partial \tau^2} + (1+i\frac{\mu_2}{2})|u|^2 u = \frac{i}{2}\mu u$ Die Gleichung erlaubt die Propagation von solitären Wellen: $u(\xi, \tau) = N_s [sech(p\tau)]^{1+iq} e^{iK_s\xi}$ Eine Solitonlösung exisiert nur für $d = \mu = \mu_2 = 0$

Propagation eines Solitons in einem EDFA

Es findet ein Übergang zur solitären Welle statt.

Semiconductor Optical Amplifier

SOA: Verstärkung

Die Verstärkung in einem Halbleiter erfolgt durch stimulierte Emission und beträgt: $G_s = e^{g \cdot L}$

SOA: Verstärkung

Die Verstärkung in einem Halbleiter erfolgt durch stimulierte Emission und beträgt: $G_s = e^{g \cdot L}$ Verstärkungskoefizient

SOA: Verstärkung

Die Verstärkung in einem Halbleiter erfolgt durch stimulierte Emission und beträgt: $G_s = e^{g \cdot L}$

SOA: Dynamik

Ladungsträgerdynamik in einem SOA

SOA: Anwendungen

Cross- Gain Modulation bei bis zu 100 GB/s

Cross- Phase Modulation

SOA

Vorteile

- Gute Verstärkung
- Kompaktes und günstiges Bauelement
- Eröffnet viele Möglichkeiten der optischen Signalverarbeitung

Nachteile

 Variierende Verstärkung und Variation der Bit-Raten im GB/s Bereich aufgrund geringer Erholungszeit von einigen hundert ps

Zusammenfassung

Glasfasern für große Entfernungen – p.53

Zusammenfassung

Dispersionsmanagement

- Die chromatische Dispersion
 kann über DCF vollständig
 kompensiert werden.
- Nichtlineare Effekte führen hingegen zu Einschränkungen beim Entwurf einer Übertragungsstrecke.
- Solitonen weisen als Alternative aufgrund ihrer Interaktionen gravierende Nachteile auf.

Zusammenfassung

Westfälische Wilhelms-Universität Münster

Optische Verstärker

- EDFA's bieten gute Verstärkung bei geringem Rauschen. Die Propagation solitärer Wellen in einem EDFA ist möglich.
- Halbleiterverstärker eröffnen viele Möglichkeiten der optischen Signalverarbeitung und stellen eine mögliche Alternative zum EDFA dar.

